Recitation 11. November 26

Focus: random variables, principal component analysis (PCA)

A random variable is a quantity X that takes values in \mathbb{R}. It can be discrete, meaning that it takes only countably many possible values x_{i} each with probability p_{i}, or continuous, in which case it is associated to a probability distribution $p(x)($ where $p: \mathbb{R} \rightarrow \mathbb{R})$.

The mean (or expected value) $E[X]$ of X is the sum $\sum_{i} x_{i} p_{i}$ if X is discrete and the integral $\int_{-\infty}^{\infty} x p(x) d x$ if X is continuous. If Y is another random variable, and $a, b \in \mathbb{R}$, then $E[a X+b Y]=a E[X]+b E[Y]$ (so the mean obeys this linearity property). The variance $\Sigma=\Sigma_{X X}$ of a random variable X is $E\left[(X-\mu)^{2}\right]=E\left[(X-E[X])^{2}\right]$. The covariance $\Sigma_{X Y}$ of two random variables X and Y is $E[(X-E[X])(Y-E[Y])]$.

Given n random variables X_{1}, \ldots, X_{n}, we may assemble them into a vector $\boldsymbol{X}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right]$, called a random vector. The covariance matrix of these random variables X_{1}, \ldots, X_{n} is the matrix

$$
\left[\begin{array}{ccc}
\Sigma_{X_{1} X_{1}} & \cdots & \Sigma_{X_{1} X_{n}} \\
\vdots & \ddots & \vdots \\
\Sigma_{X_{n} X_{1}} & \cdots & \Sigma_{X_{n} X_{n}}
\end{array}\right]=E\left[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right]
$$

where $\boldsymbol{\mu}=\left[\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{n}\end{array}\right]$ is the vector of means.

1. Sample from the numbers 1 to 1000 with equal probabilities $1 / 1000$, and look at the last digit of the sample, squared. This square can end with $X=0,1,4,5,6$, or 9 . What are the probabilities $p_{0}, p_{1}, p_{4}, p_{5}, p_{6}$ and p_{9} ? Compute the mean and variance of X.

Solution:

2. Let A, H, and W denote random variables corresponding to the age, height, and weight of dogs at a local shelter, respectively. Suppose the random vector $\left[\begin{array}{c}A \\ H \\ W\end{array}\right]$ takes two values, $\left[\begin{array}{c}7 \\ 20 \\ 132\end{array}\right]$ and $\left[\begin{array}{c}4 \\ 24 \\ 120\end{array}\right]$ with probabilities p and $1-p$ respectively. Compute the covariance matrix of A, H, and W.

Solution:

3. Suppose now that the random variables A, H, W from above instead have the covariance matrix

$$
K=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 3 & -2 \\
2 & -2 & 6
\end{array}\right]
$$

Find three linear combinations of A, H, W which are pairwise independent random variables. What is the variance of each?

Solution:

4. Let X be a random variable. Suppose the mean $E[X]=\mu$ and the variance $\Sigma_{X X}=\sigma^{2}$. Compute $E\left[X^{2}\right]$ in terms of μ and σ.

Solution:

