Recitation 12. December 3

Focus: Probability, Statistics and Markov Chains

Consider running an experiment n times measuring a certain quantity. We call these values $x_1, x_2 \dots x_n$ samples. The collection of these is known as **data set**.

The **mean** of a data set is given by $\mu = \frac{1}{n}(x_1 + \dots + x_n)$. The **variance** of the data set is $\Sigma = \frac{1}{n-1}((x_1 - \mu)^2 + \dots + (x_n - \mu)^2)$. Similarly for a second data set y_1, \dots, y_n the covariance between x's and y's is given by $\Sigma_{xy} = \frac{1}{n-1}((x_1 - \mu)(y_1 - \nu) + \dots + (x_n - \mu)(y_n - \nu))$, where ν is the average of the y's.

Let $P = I - \mathbf{o}\mathbf{o}^T/\mathbf{o}^T\mathbf{o}$, where $\mathbf{o} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$, is the projection matrix to the orthogonal complement of \mathbf{o} . Let $A = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$

 $\begin{bmatrix} x_1 & y_1 & z_1 & \dots \\ \vdots & \vdots & \vdots \\ x_n & y_n & z_n & \dots \end{bmatrix}$ a matrix of different data sets. Then the covariance matrix is computed by $K = \frac{A^T P A}{n-1}$.

A *Markov matrix* M is a square matrix with non-negative entries whose columns add up to 1. It models a *Markov* process which has n states and after each step the *i*th column of M gives the probability of moving from the *i*th state to the other. So if we start with a distribution v computing Mv gives the probability distribution after one step. Using eigenvalues and eigenvectors we can compute the steady state given by the limit $M^k v$ as $k \to \infty$

1. Consider the following measurements of temperature and pressure (measured in some units) given by Temp =

$$\begin{bmatrix} 1\\2\\-3 \end{bmatrix} \text{ and } Press = \begin{bmatrix} 6\\1\\2 \end{bmatrix}$$

- Compute the covariance matrix.
- Find linear combinations of temperature and pressure that are independent

Solution: First we put into a matrix the above samples into a matrix

$$A = \begin{bmatrix} 1 & 6\\ 2 & 1\\ -3 & 2 \end{bmatrix}$$

And let $P = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$. Then the covariance matrix is given by

$$K = A^T P A / n - 1 = \begin{bmatrix} 7 & 1 \\ 1 & 7 \end{bmatrix}$$

To find independent random variables we need to diagonalize K. Note that the eigenvalues are given by $\lambda_1 = 6$ and $\lambda_2 = 8$ with eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Thus we get that Temp - Preas and Temp + Press are independent random variables

- 2. Consider three independent random variable X_1 , X_2 and X_3 . Assume they have variances Σ_1 , Σ_2 and Σ_3 and means μ_1 , μ_2 and μ_3 .
 - What is the covariance matrix of these variables?
 - What is the variance of $X_1 + X_2 + X_3$?
 - What is the covariance of X_1 and $X_1 + X_2 + X_3$?

Solution: Since the random variables are independent their covariance is 0. Hence we get the covariance matrix is given by

$$K = \begin{bmatrix} \Sigma_1 & 0 & 0\\ 0 & \Sigma_2 & 0\\ 0 & 0 & \Sigma_3 \end{bmatrix}$$

Note the linear combination of the above random variables is given by the vector $v = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Hence the variance of this random variable is given by $v^T K v = \Sigma_1 + \Sigma_2 + \Sigma_3$. Similarly the covariance of the two linear combinations are given by $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} K v = \Sigma_1$.

3. Consider the matrix

$$A = \begin{bmatrix} 1 & 2\\ a & b \end{bmatrix}$$

For some constants a and b Suppose it is a covariance matrix of two random variables X and Y.

- What can you say about a and b?
- What can you say if on top of the above you know that there is some non-trivial linear combination of X and Y that are constant?

Solution: Note that because it is a covariance matrix it is a symmetric positive semidefinite matrix. Hence we know a = 2 and since both eigenvalues have to be ≥ 0 we need the determinant to be positive, so $b - 4 \geq 0$. Note that in that case indeed the sum and product of eigenvalues is non-negative hence the matrix is positive semidefinite.

If a nontrivial linear combination of X and Y are constant it means there is some non-zero vector v, such that $v^T A v = 0$. Thus we must have A is not positive definite, but positive semidefinite, hence has a 0 eigenvalue. So in particular the determinant is 0, thus we need b = 4. In that case 2X - Y is in fact constant.

- 4. Consider the Markov process with two states up and down.
 - If the state is up the next step is equaly likely to be up or down.
 - If the state is down the next step is up.
 - 1. Find the Markov matrix describing this Markov process.
 - 2. If we start in the up state, what is the probability distribution after k steps?
 - 3. What is the steady state?

Solution: The Markov matrix above is given by the matrix

$$M = \begin{bmatrix} 1/2 & 1\\ 1/2 & 0 \end{bmatrix}$$

The *k*th step from the above is given by $M^k \begin{bmatrix} 1\\ 0 \end{bmatrix}$. To find this we need to compute the *k*th power of a matrix, so we need to compute the eigenvalues and eigenvectors. Note that since this is a Markov matrix it has an eigenvalue 1 and hence the other eigenvalue is -1/2. The corresponding eigenvectors are $\begin{bmatrix} 2\\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1\\ -1 \end{bmatrix}$. So the starting state in terms of the eigenvectors is $\frac{1}{3}(\begin{bmatrix} 2\\ 1 \end{bmatrix} + \begin{bmatrix} 1\\ -1 \end{bmatrix})$ and hence the state for the *k*th step is

$$\frac{1}{3} \begin{pmatrix} 2\\1 \end{pmatrix} + (-1/2)^k \begin{bmatrix} 1\\-1 \end{bmatrix} \end{pmatrix}$$

Here we see that the second term goes to 0 as k goes to ∞ . Hence we get the steady state is $\frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.