Recitation 12. December 3

Focus: Probability, Statistics and Markov Chains

Consider running an experiment n times measuring a certain quantity. We call these values $x_1, x_2 \dots x_n$ samples. The collection of these is known as **data set**.

The **mean** of a data set is given by $\mu = \frac{1}{n}(x_1 + \dots + x_n)$. The **variance** of the data set is $\Sigma = \frac{1}{n-1}((x_1 - \mu)^2 + \dots + (x_n - \mu)^2)$. Similarly for a second data set y_1, \dots, y_n the covariance between x's and y's is given by $\Sigma_{xy} = \frac{1}{n-1}((x_1 - \mu)(y_1 - \nu) + \dots + (x_n - \mu)(y_n - \nu))$, where ν is the average of the y's.

Let $P = I - \mathbf{o}\mathbf{o}^T/\mathbf{o}^T\mathbf{o}$, where $\mathbf{o} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$, is the projection matrix to the orthogonal complement of \mathbf{o} . Let $A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} x_1 & y_1 & z_1 & \dots \\ \vdots & \vdots & \vdots \\ x_n & y_n & z_n & \dots \end{bmatrix}$ a matrix of different data sets. Then the covariance matrix is computed by $K = \frac{A^T P A}{n-1}$.

A Markov matrix M is a square matrix with non-negative entries whose columns add up to 1. It models a Markov process which has n states and after each step the *i*th column of M gives the probability of moving from the *i*th state to the other. So if we start with a distribution v computing Mv gives the probability distribution after one step. Using eigenvalues and eigenvectors we can compute the steady state given by the limit $M^k v$ as $k \to \infty$

1. Consider the following measurements of temperature and pressure (measured in some units) given by Temp =

$$\begin{bmatrix} 1\\2\\-3 \end{bmatrix} \text{ and } Press = \begin{bmatrix} 6\\1\\2 \end{bmatrix}$$

- Compute the covariance matrix.
- Find linear combinations of temperature and pressure that are independent

Solution:

- 2. Consider three independent random variable X_1 , X_2 and X_3 . Assume they have variances Σ_1 , Σ_2 and Σ_3 and means μ_1 , μ_2 and μ_3 .
 - What is the covariance matrix of these variables?
 - What is the variance of $X_1 + X_2 + X_3$?
 - What is the covariance of X_1 and $X_1 + X_2 + X_3$?

Solution:

3. Consider the matrix

Solution:

 $\begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$

For some constants a and b Suppose it is a covariance matrix of two random variables X and Y.

- What can you say about a and b?
- What can you say if on top of the above you know that there is some linear combination of X and Y that are constant?

4. Consider the Markov process with two states up and down.

- If the state is up the next step is equaly likely to be up or down.
- If the state is down the next step is up.
- 1. Find the Markov matrix describing this Markov process.
- 2. If we start in the up state, what is the probability distribution after k steps?
- 3. What is the steady state?

Solution: