Recitation 13. December 10

Focus: Fourier Series, Population Dynamics, and Graphs

Any 2π -periodic function f(x) has a Fourier series expansion

$$f(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(3x) + \dots + b_1 \sin(x) + b_2 \sin(2x) + b_3 \sin(3x) + \dots$$

where

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx,$$

and, for each integer n > 0,

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx, \text{ and}$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx.$$

1. Consider the 2π -periodic square wave, which on the interval $[-\pi,\pi]$ is described by

$$f(x) = \begin{cases} 0, & \text{if } -\pi \le x \le 0\\ 1, & \text{if } 0 < x \le \pi \end{cases}$$

Compute the Fourier series expansion of f(x).

Solution:

We calculate the various coefficients

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \int_0^{\pi} 1 dx = 1/2.$$

For each integer n > 0, we have:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_0^{\pi} \cos(nx) dx = 0.$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_0^{\pi} \sin(nx) dx = \frac{-\cos(n\pi) + \cos(0)}{\pi n}$$

When n is an integer, $\cos(n\pi) = (-1)^n$, and so $b_n = \frac{1-(-1)^n}{\pi n}$ The Fourier series for the square wave is

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{\pi n} \sin(nx) = \frac{1}{2} + \frac{2\sin(x)}{\pi} + \frac{2\sin(3x)}{3\pi} + \frac{2\sin(5x)}{5\pi} + \cdots$$

Just as a remark, we could have predicted that the a_n are 0 in advance, since $f(x) - \frac{1}{2}$ is an odd function like $\sin(nx)$ and unlike $\cos(nx)$.

- 2. In a certain habitat, the number of rabbits r_k and wolves w_k is recorded each year k. It is observed that the quantities obey the following formulae:
 - $r_k = 4r_{k-1} 2w_{k-1}$.

•
$$w_k = r_{k-1} + w_{k-1}$$
.

- A) If $r_0 = 4$ and $w_0 = 2$, what are r_{15} and w_{15} ?
- B) If $r_0 = 2$ and $w_0 = 2$, what are r_{15} and w_{15} ?
- C) What about when $r_0 = 6$ and $w_0 = 4$?

Solution: This example is discussed on pages 104-105 of the lecture notes. Let M denote the matrix

$$M = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix}.$$

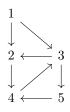
Then there is an equation

Solution: We see that

 $\begin{bmatrix} r_k \\ w_k \end{bmatrix} = M^k \begin{bmatrix} r_0 \\ w_0 \end{bmatrix}.$ In situation (A), we may note that $\begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} r_0 \\ w_0 \end{bmatrix}$ is an eigenvector of M of eigenvalue 3. Therefore $r_{15} = 4(3)^{15}$ and $w_{15} = 2(3)^{15}$. In situation (B), $\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} r_0 \\ w_0 \end{bmatrix}$ is an eigenvector of M of eigenvalue 2. Therefore $r_{15} = 2(2)^{15} = 2^{16}$ and $w_{15} = 2(2)^{15} = 2^{16}$. In situation (C), we may write $M^{15} \begin{bmatrix} 6 \\ 4 \end{bmatrix} = M^{15} \begin{bmatrix} 4 \\ 2 \end{bmatrix} + M^{15} \begin{bmatrix} 2 \\ 2 \end{bmatrix},$ and so $r_{15} = 4(3)^{15} + 2^{16}$ and $w_{15} = 2(3)^{15} + 2^{16}$. As this example shows, it can be helpful to write arbitrary

and so $r_{15} = 4(3)^{15} + 2^{16}$ and $w_{15} = 2(3)^{15} + 2^{16}$. As this example shows, it can be helpful to write arbitrary vectors in terms of eigenvectors, or alternatively to diagonalize M as in the lecture notes.

3. The adjacency matrix A of the following graph is a 5×5 matrix:



The entry in row *i* and column *j* is 1 if there is an arrow connecting *i* to *j*, and it is 0 if i = j or if there is no arrow connecting *i* to *j*. Write down the adjacency matrix *A*, and compute A^2 as well as $(A^2)^2 = A^4$. For each pair (i, j), how many length 4 paths are there from *i* to *j*?

A =	0	1	1	0	0]
	0	0	0		0
	0	1 0 1 0 0	1 0 0 1 0	1 0 0	1.
	0	0	1	0	0
	0 0 0 0 0	0	0	1	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$.
$A^2 =$	0	1	0	1	1
	0	0	1	0	0
	0	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} $	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $	0 .
	0	1	0	0	1
	$\begin{bmatrix} 0\\0\\0\\0\\0\\0 \end{bmatrix}$	0	1	0	$\begin{array}{c}1\\0\\0\\1\\0\end{array}\right].$
$A^4 =$	Го	1	2	0	1]
		0	0	2	$\overline{0}$
	$ _{0}$	2	0	0	$\begin{bmatrix} \circ \\ 2 \end{bmatrix}$.
		0	2	0	$\begin{bmatrix} - \\ 0 \end{bmatrix}$
	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 2 \\ 0 \\ 0 \\ 2 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 2 \\ 0 \\ 0 \\ 2 \end{array} $	
	-				-

The entry of A^4 in row *i* and column *j* records the number of length 4 paths from *i* to *j*. For example, there are two length 4 paths from 3 to 2, one of which proceeds $3 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2$ and the other of which proceeds $3 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 2$.