Recitation 13. December 10

Focus: Fourier Series, Population Dynamics, and Graphs

Any 2π-periodic function $f(x)$ has a Fourier series expansion

$$
f(x)=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+a_{3} \cos (3 x)+\cdots+b_{1} \sin (x)+b_{2} \sin (2 x)+b_{3} \sin (3 x)+\cdots,
$$

where

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x
$$

and, for each integer $n>0$,

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \text { and } \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{gathered}
$$

1. Consider the 2π-periodic square wave, which on the interval $[-\pi, \pi]$ is described by

$$
f(x)=\left\{\begin{array}{l}
0, \text { if }-\pi \leq x \leq 0 \\
1, \text { if } 0<x \leq \pi
\end{array}\right.
$$

Compute the Fourier series expansion of $f(x)$.

Solution:

We calculate the various coefficients

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2 \pi} \int_{0}^{\pi} 1 d x=1 / 2
$$

For each integer $n>0$, we have:

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (n x) d x=0 \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{0}^{\pi} \sin (n x) d x=\frac{-\cos (n \pi)+\cos (0)}{\pi n}
\end{gathered}
$$

When n is an integer, $\cos (n \pi)=(-1)^{n}$, and so $b_{n}=\frac{1-(-1)^{n}}{\pi n}$ The Fourier series for the square wave is

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{\pi n} \sin (n x)=\frac{1}{2}+\frac{2 \sin (x)}{\pi}+\frac{2 \sin (3 x)}{3 \pi}+\frac{2 \sin (5 x)}{5 \pi}+\cdots
$$

Just as a remark, we could have predicted that the a_{n} are 0 in advance, since $f(x)-\frac{1}{2}$ is an odd function like $\sin (n x)$ and unlike $\cos (n x)$.
2. In a certain habitat, the number of rabbits r_{k} and wolves w_{k} is recorded each year k. It is observed that the quantities obey the following formulae:

- $r_{k}=4 r_{k-1}-2 w_{k-1}$.
- $w_{k}=r_{k-1}+w_{k-1}$.
A) If $r_{0}=4$ and $w_{0}=2$, what are r_{15} and w_{15} ?
B) If $r_{0}=2$ and $w_{0}=2$, what are r_{15} and w_{15} ?
C) What about when $r_{0}=6$ and $w_{0}=4$?

Solution: This example is discussed on pages 104-105 of the lecture notes. Let M denote the matrix

$$
M=\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]
$$

Then there is an equation

$$
\left[\begin{array}{c}
r_{k} \\
w_{k}
\end{array}\right]=M^{k}\left[\begin{array}{c}
r_{0} \\
w_{0}
\end{array}\right] .
$$

In situation (A), we may note that $\left[\begin{array}{l}4 \\ 2\end{array}\right]=\left[\begin{array}{c}r_{0} \\ w_{0}\end{array}\right]$ is an eigenvector of M of eigenvalue 3 . Therefore $r_{15}=4(3)^{15}$ and $w_{15}=2(3)^{15}$.
In situation $(B),\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{c}r_{0} \\ w_{0}\end{array}\right]$ is an eigenvector of M of eigenvalue 2 . Therefore $r_{15}=2(2)^{15}=2^{16}$ and $w_{15}=2(2)^{15}=2^{16}$.
In situation (C), we may write

$$
M^{15}\left[\begin{array}{l}
6 \\
4
\end{array}\right]=M^{15}\left[\begin{array}{l}
4 \\
2
\end{array}\right]+M^{15}\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

and so $r_{15}=4(3)^{15}+2^{16}$ and $w_{15}=2(3)^{15}+2^{16}$. As this example shows, it can be helpful to write arbitrary vectors in terms of eigenvectors, or alternatively to diagonalize M as in the lecture notes.
3. The adjacency matrix A of the following graph is a 5×5 matrix:

The entry in row i and column j is 1 if there is an arrow connecting i to j, and it is 0 if $i=j$ or if there is no arrow connecting i to j. Write down the adjacency matrix A, and compute A^{2} as well as $\left(A^{2}\right)^{2}=A^{4}$. For each pair (i, j), how many length 4 paths are there from i to j ?

Solution: We see that

$$
\begin{aligned}
A & =\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \\
A^{2} & =\left[\begin{array}{lllll}
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] \\
A^{4} & =\left[\begin{array}{lllll}
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 2 & 0 \\
0 & 2 & 0 & 0 & 2 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0
\end{array}\right]
\end{aligned}
$$

The entry of A^{4} in row i and column j records the number of length 4 paths from i to j. For example, there are two length 4 paths from 3 to 2 , one of which proceeds $3 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2$ and the other of which proceeds $3 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 2$.

