Recitation 13. December 10

Focus: Fourier Series, Population Dynamics, and Graphs

Any 2π-periodic function $f(x)$ has a Fourier series expansion

$$
f(x)=a_{0}+a_{1} \cos (x)+a_{2} \cos (2 x)+a_{3} \cos (3 x)+\cdots+b_{1} \sin (x)+b_{2} \sin (2 x)+b_{3} \sin (3 x)+\cdots,
$$

where

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x
$$

and, for each integer $n>0$,

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x, \text { and } \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{gathered}
$$

1. Consider the 2π-periodic square wave, which on the interval $[-\pi, \pi]$ is described by

$$
f(x)=\left\{\begin{array}{l}
0, \text { if }-\pi \leq x \leq 0 \\
1, \text { if } 0<x \leq \pi
\end{array}\right.
$$

Compute the Fourier series expansion of $f(x)$.

Solution:

2. In a certain habitat, the number of rabbits r_{k} and wolves w_{k} is recorded each year k. It is observed that the quantities obey the following formulae:

- $r_{k}=4 r_{k-1}-2 w_{k-1}$.
- $w_{k}=r_{k-1}+w_{k-1}$.
A) If $r_{0}=4$ and $w_{0}=2$, what are r_{15} and w_{15} ?
B) If $r_{0}=2$ and $w_{0}=2$, what are r_{15} and w_{15} ?
C) What about when $r_{0}=6$ and $w_{0}=4$?

Solution:

3. The adjacency matrix A of the following graph is a 5×5 matrix:

The entry in row i and column j is 1 if there is an arrow connecting i to j, and it is 0 if $i=j$ or if there is no arrow connecting i to j. Write down the adjacency matrix A, and compute A^{2} as well as $\left(A^{2}\right)^{2}=A^{4}$. For each pair (i, j), how many length 4 paths are there from i to j ?

Solution:

