First Midterm Review Problems

Problem 1: Consider the matrix

$$
A=\left[\begin{array}{cccc}
3 & 6 & 3 & 9 \\
-2 & -4 & 0 & 2
\end{array}\right] .
$$

(1) Compute the reduced row echelon form of A.
(2) What is a basis for the column space of A ? What is a basis for the nullspace of A ? What is the rank of A ?
(3) Write down a general solution to the following system of 2 equations in 4 variables:

$$
\begin{gathered}
3 a+6 b+3 c+9 d=0 \\
-2 a-4 b+2 d=-6 .
\end{gathered}
$$

(4) Write down a basis for the column space of A^{T}, and for the nullspace of A^{T}.

Problem 2: Write down the 4×4 elimination matrix $E_{3,1}^{(-2)}$. What is its inverse?

Problem 3: Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
2 & 4 & 8 & 11 \\
-2 & -4 & -8 & -8 \\
1 & 1 & 2 & 3
\end{array}\right]
$$

(1) Compute the $L U$ factorization of A. Recall that L is lower-triangular with 1 s along the diagonal, and U is upper triangular. The matrix U is obtained by bringing A into row echelon form (but not into reduced row echelon form).
(2) Write L as a product of 4×4 elimination matrices.
(3) What is a basis for the column space of A ? What is the rank of A ? Is A invertible?
(4) Let A^{\prime} denote the matrix

$$
A^{\prime}=\left[\begin{array}{cccc}
-2 & -4 & -8 & -8 \\
1 & 1 & 2 & 3 \\
2 & 4 & 8 & 11 \\
1 & 1 & 2 & 3
\end{array}\right]
$$

Construct a $P A^{\prime}=L U$ decomposition by finding P, L, and U such that P is a permutation matrix, L is lower triangular with 1 s on the diagonal, and U is upper triangular.

