First Midterm Review Problems

Problem 1: Consider the matrix

$$
A=\left[\begin{array}{cccc}
3 & 6 & 3 & 9 \\
-2 & -4 & 0 & 2
\end{array}\right] .
$$

(1) Compute the reduced row echelon form of A.

Solution: The reduced row echelon form may be calculated via the sequence of row operations

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
3 & 6 & 3 & 9 \\
2 & -4 & 0 & 2
\end{array}\right] } \\
\rightarrow & {\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
2 & -4 & 0 & 2
\end{array}\right] } \\
\rightarrow & {\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
-1 & -2 & 0 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & 0 & 1 & 4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & 4
\end{array}\right] .
\end{aligned}
$$

(2) What is a basis for the column space of A ? What is a basis for the nullspace of A ? What is the rank of A ?

Solution: The column space of A has basis

$$
\left\{\left[\begin{array}{c}
3 \\
-2
\end{array}\right],\left[\begin{array}{l}
3 \\
0
\end{array}\right]\right\} .
$$

The rank of A is thus 2 . The null space consists of the set of vectors

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

such that both

$$
\begin{aligned}
a+2 b-d & =0, \text { and } \\
c+4 d & =0 .
\end{aligned}
$$

The 2nd and 4th columns of the row reduction of A do not contain pivots, so b and d are free variables. Setting $b=1$ and $d=0$ yields $a=-2$ and $c=0$. Setting $b=0$ and $d=1$ yields $a=1$ and $c=-4$. A basis for the null space of A is thus

$$
\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-4 \\
1
\end{array}\right]\right\}
$$

(3) Write down a general solution to the following system of 2 equations in 4 variables:

$$
\begin{gathered}
3 a+6 b+3 c+9 d=0 \\
-2 a-4 b+2 d=-6
\end{gathered}
$$

Solution: A general solution looks like

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
9 \\
-3
\end{array}\right]+\alpha\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+\beta\left[\begin{array}{c}
1 \\
0 \\
-4 \\
1
\end{array}\right],
$$

where α and β are arbitrary numbers. In other words, every solution is given by a particular solution plus an element of the null space of A. While the above expression uses $\left[\begin{array}{c}0 \\ 0 \\ 9 \\ -3\end{array}\right]$ as the particular solution, many other particular solutions are possible.
(4) Write down a basis for the column space of A^{T}, and for the nullspace of A^{T}.

Solution: Since the rank of A is 2 , the rank of A^{T} is also 2 . Thus, the two columns of A^{T} (i.e., the two rows of A) are linearly independent, and a basis for the column space of A^{T} is given by

$$
\left\{\left[\begin{array}{l}
3 \\
6 \\
3 \\
9
\end{array}\right],\left[\begin{array}{c}
-2 \\
-4 \\
0 \\
2
\end{array}\right]\right\}
$$

Since A^{T} has rank 2 , but A^{T} only has 2 columns, the nullspace of A^{T} is zero-dimensional. Thus,

$$
N\left(A^{T}\right)=\{\mathbf{0}\}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\} .
$$

A basis for $N\left(A^{T}\right)$ is the empty set. Don't worry if that last sentence is confusing; on a homework or exam it is sufficient simply to say that $N\left(A^{T}\right)$ contains only the origin.

Problem 2: Write down the 4×4 elimination matrix $E_{3,1}^{(-2)}$. What is its inverse?
Solution: We have

$$
E_{3,1}^{(-2)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

and

$$
\left(E_{3,1}^{(-2)}\right)^{-1}=E_{3,1}^{(2)}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Problem 3: Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
2 & 4 & 8 & 11 \\
-2 & -4 & -8 & -8 \\
1 & 1 & 2 & 3
\end{array}\right] .
$$

(1) Compute the $L U$ factorization of A. Recall that L is lower-triangular with 1 s along the diagonal, and U is upper triangular. The matrix U is obtained by bringing A into row echelon form (but not into reduced row echelon form).

Solution: We use the following sequence of row operations to bring A into row echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
2 & 4 & 8 & 11 \\
-2 & -4 & -8 & -8 \\
1 & 1 & 2 & 3
\end{array}\right] } \\
& \xrightarrow{E_{21}^{(-2)}}\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 2 & 4 & 5 \\
-2 & -4 & -8 & -8 \\
1 & 1 & 2 & 3
\end{array}\right] \\
& \xrightarrow{E_{31}^{(2)}}\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 2 & 4 & 5 \\
0 & -2 & -4 & -2 \\
1 & 1 & 2 & 3
\end{array}\right] \\
& \xrightarrow{E_{41}^{(-1)}}\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 2 & 4 & 5 \\
0 & -2 & -4 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \xrightarrow{E_{32}^{(1)}}\left[\begin{array}{cccc}
1 & 1 & 2 & 3 \\
0 & 2 & 4 & 5 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

It follows that

$$
U=\left[\begin{array}{llll}
1 & 1 & 2 & 3 \\
0 & 2 & 4 & 5 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
-2 & -1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] .
$$

(2) Write L as a product of 4×4 elimination matrices.

Solution: $L=E_{21}^{(2)} E_{31}^{(-2)} E_{41}^{(1)} E_{32}^{(-1)}$
(3) What is a basis for the column space of A ? What is the rank of A ? Is A invertible?

Solution: A basis for the column space consists of the 1st, 2nd, and 4th columns of A. The rank of A is 3 . Since the columns of A are not linearly independent, A is not invertible.
(4) Let A^{\prime} denote the matrix

$$
A^{\prime}=\left[\begin{array}{cccc}
-2 & -4 & -8 & -8 \\
1 & 1 & 2 & 3 \\
2 & 4 & 8 & 11 \\
1 & 1 & 2 & 3
\end{array}\right]
$$

Construct a $P A^{\prime}=L U$ decomposition by finding P, L, and U such that P is a permutation matrix, L is lower triangular with 1 s on the diagonal, and U is upper triangular.

Solution: We can use

$$
P=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

This makes $P A^{\prime}=A$, and so we may use the L and U matrices from the first part of this problem.

