Second Midterm Review Solutions

Problem 1: Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-2 & 0
\end{array}\right]
$$

and the vector

$$
b=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

(1) Find $p=A x$ that minimizes $\|A x-b\|$.

Solution: Note that the solution p minimizing the distance, is the orthogonal projection of b onto $V=C(A)$ the column space of A.
The columns of A are linearly independent, so we can use this to compute the projection matrix $P_{V}=A\left(A^{T} A\right)^{-1} A^{T}$. Hence we can compute p as follows

$$
p=A\left[\begin{array}{ll}
5 & 1 \\
1 & 2
\end{array}\right]^{-1}\left[\begin{array}{ccc}
1 & 0 & -2 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=A \frac{1}{9}\left[\begin{array}{cc}
2 & -1 \\
-1 & 5
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
0 & 1 \\
-2 & 0
\end{array}\right] \frac{1}{3}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

(2) Find x that minimizes $\|A x-b\|$.

Solution: Note that $p=A\left(\left(A^{T} A\right)^{-1} A^{T} b\right)$, so we can use $x=\left(A^{T} A\right)^{-1} A^{T} b$. This is unique as the columns of A are linearly independent. Thus from the above computation

$$
x=\left(A^{T} A\right)^{-1} A^{T} b=\frac{1}{3}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Problem 2: Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & 2 \\
-1 & -3 \\
-1 & -3
\end{array}\right]
$$

(1) Use Gram-Schmidt to find the factorization $A=Q R$.

Solution: Denote by v_{1} and v_{2} the 2 columns of A. First we rescale v_{1} to get:

$$
q_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{1}{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]
$$

Now we get an orthogonal vector to q_{1} by

$$
q_{2}^{\prime}=v_{2}-\left(q_{1} \cdot v_{2}\right) q_{1}=v_{2}-5 q_{1}=\frac{1}{2}\left[\begin{array}{l}
-1 \\
-1 \\
-1 \\
-1
\end{array}\right]
$$

Note this vector is already normalized, so $q_{2}=q_{2}^{\prime}$. These operations can be writen as

$$
Q=A\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right] E_{12}^{(-5)}
$$

So we can rewrite

$$
A=Q E_{12}^{(5)}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & -1 \\
-1 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{ll}
2 & 5 \\
0 & 1
\end{array}\right]
$$

(2) Check that the matrix in (1) satisfies $Q^{T} Q=I$

Solution:

$$
Q^{T} Q=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & -1 & -1 \\
-1 & - & -1 & -1
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & -1 \\
-1 & -1 \\
-1 & -1
\end{array}\right]=I
$$

Problem 3: Consider the linear transformation

$$
\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
$$

such that:

- $\phi\left(e_{1}\right)=3 e_{1}+1 e_{2}$
- $\phi\left(e_{2}\right)=2 e_{1}$
- $\phi\left(e_{3}\right)=e_{1}+e_{2}$

Here recall that we denote by e_{i} the standard basis.
(1) Find the matrix A of ϕ with respect to the standard basis.

Solution: The above equations give us exactly the first second and third columns of the matrix A respectively, so we get

$$
A=\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

(2) Let $v_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$ and $v_{3}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$ and let $w_{1}=\phi\left(v_{1}\right)$ and $w_{2}=\phi\left(v_{2}\right)$. What is the matrix B of ϕ with respect to the bases $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$.

Solution:

$$
\begin{aligned}
& w_{1}=\phi\left(v_{1}\right)=A v_{1}=\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& w_{2}=\phi\left(v_{2}\right)=A v_{2}=\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Further we compute

$$
\phi\left(v_{3}\right)=A v_{3}=\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]=0
$$

Consider the change of basis formula $B=W^{-1} A V$ for

$$
\begin{gathered}
V=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
-1 & -1 & -1
\end{array}\right] \\
W=\left[\begin{array}{cc}
2 & 1 \\
0 & -1
\end{array}\right]
\end{gathered}
$$

So we compute

$$
W^{-1}=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
0 & -1
\end{array}\right]
$$

So we get

$$
B=W^{-1} A V=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Note that this makes sense as $\phi\left(v_{1}\right)=w_{1}, \phi\left(v_{2}\right)=w_{2}$ and $\phi\left(v_{3}\right)=0$.

Problem 4: Consider the matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

(1) Find the determinant using the cofactor formula along the first row.

Solution: We compute the required cofactors first

$$
\begin{aligned}
& C_{11}=(-1)^{2} \operatorname{det}\left(M_{11}\right)=\operatorname{det}([d])=d \\
& C_{12}=(-1)^{3} \operatorname{det}\left(M_{12}\right)=\operatorname{det}([c])=-c
\end{aligned}
$$

So the cofactor formula becomes

$$
\operatorname{det}(A)=a C_{11}+b C_{12}=a d-b c
$$

(2) Find the determinant using the cofactor formula along the second row.

Solution: We compute the required cofactors first

$$
C_{21}=(-1)^{3} \operatorname{det}\left(M_{11}\right)=\operatorname{det}([b])=-b
$$

$$
C_{22}=(-1)^{4} \operatorname{det}\left(M_{22}\right)=\operatorname{det}([a])=a
$$

So the cofactor formula becomes

$$
\operatorname{det}(A)=c C_{21}+a C_{22}=-b c+a d
$$

(3) Use Cramer's rule to find the inverse of the above matrix.

Solution: Note that from the above computations we have computed all cofactors, so we can put them in the cofactor matrix

$$
X=\left[\begin{array}{ll}
C_{11} & C_{21} \\
C_{12} & C_{22}
\end{array}\right]=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Thus we get the inverse is given by

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} X=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Problem 5: Consider the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 1 \\
3 & 5 & 7
\end{array}\right]
$$

(1) Use the cofactor formula to compute the determinant.

Solution: We expand along th first row as this has a zero. We hence have

$$
\operatorname{det}(A)=0 * C_{11}+1 * C_{12}+2 * C_{13}=-(7-3)+2(5-6)=-6
$$

(2) Use row operations to compute the determinant.

Solution: We first do Gaussian elimination. Note that to start we need to swap the first 2 rows, so

$$
A \rightsquigarrow\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
3 & 5 & 7
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & -1 & 4
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 6
\end{array}\right]
$$

Note that here we have only swapped rows once, so we get

$$
\operatorname{det}(A)=-\operatorname{det}\left(\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 6
\end{array}\right]\right)=-6
$$

Here we use the determinant of upper triangular matrices is the product of diagonal entries
(3) Use the large 3! formula to compute the determinant.

Solution: We write all the terms of the formula to get
$\operatorname{det}(A)=0 * 2 * 7+1 * 1 * 3+2 * 1 * 5-0 * 1 * 5-1 * 1 * 7-2 * 2 * 3=0+3+10-0-7-12=-6$

Problem 6 Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & -1 & 0 \\
-1 & -1 & 3
\end{array}\right]
$$

(1) Compute the eigenvalues of the matrix.

Solution: Recall that to consider the eigenvalues we need to consider the zeroes of $\operatorname{det}(A-\lambda I)$, so we compute

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
2 & -1-\lambda & 0 \\
-1 & -1 & 3-\lambda
\end{array}\right]\right)=(1-\lambda)(-1-\lambda)(3-\lambda)
$$

Here again we use the determinant of a lower triangular matrix is the product of the diagonal entries.
Thus from the above we see that the zeroes of the above are given by $\lambda_{1}=1, \lambda_{2}=-1$ and $\lambda_{3}=3$
(2) Compute eigenvectors for the above eigenvalues. Is there an eigenvector that is particularly easy?

Solution: First we compute the eigenvector of $\lambda_{1}=1$, ie we need to find elements in the nullspace of

$$
A-I=\left[\begin{array}{ccc}
0 & 0 & 0 \\
2 & -2 & 0 \\
-1 & -1 & 2
\end{array}\right]
$$

Note that the sum of the rows are 0 , so we get an eigenvector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Now we compute the eigenvector of $\lambda_{2}=-1$, so we need to find elements in the nullspace of

$$
A+I=\left[\begin{array}{ccc}
2 & 0 & 0 \\
2 & 0 & 0 \\
-1 & -1 & 4
\end{array}\right]
$$

Here we can get an eigenvector $\left[\begin{array}{l}0 \\ 4 \\ 1\end{array}\right]$.
Finally we compute the eigenvector of $\lambda_{3}=3$, so we need to find elements in the nullspace of

$$
A-3 I=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
2 & -4 & 0 \\
-1 & -1 & 0
\end{array}\right]
$$

Note that the last colomn is 0 , so we get an eigenvector $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Note that this eigenvector always works for a lower triangular matrix.

