
Second Midterm Review Solutions

Problem 1: Consider the matrix

A =

 1 1
0 1
−2 0

 .
and the vector

b =

1
0
1


(1) Find p = Ax that minimizes ‖Ax− b‖.

Solution: Note that the solution p minimizing the distance, is the orthogonal projection of b onto
V = C(A) the column space of A.
The columns of A are linearly independent, so we can use this to compute the projection matrix
PV = A(ATA)−1AT . Hence we can compute p as follows

p = A

[
5 1
1 2

]−1 [
1 0 −2
1 1 0

]1
0
1

 = A
1

9

[
2 −1
−1 5

] [
−1
1

]
=

 1 1
0 1
−2 0

 1

3

[
−1
2

]
=

1

3

1
2
2


(2) Find x that minimizes ‖Ax− b‖.

Solution: Note that p = A((ATA)−1AT b), so we can use x = (ATA)−1AT b. This is unique as the
columns of A are linearly independent. Thus from the above computation

x = (ATA)−1AT b =
1

3

[
−1
2

]

Problem 2: Consider the matrix

A =


1 2
1 2
−1 −3
−1 −3


(1) Use Gram-Schmidt to find the factorization A = QR.

Solution: Denote by v1 and v2 the 2 columns of A. First we rescale v1 to get:

q1 =
v1
‖v1‖

=
1

2


1
1
−1
−1



1



Now we get an orthogonal vector to q1 by

q′2 = v2 − (q1 · v2)q1 = v2 − 5q1 =
1

2


−1
−1
−1
−1


Note this vector is already normalized, so q2 = q′2. These operations can be writen as

Q = A

[
1/2 0
0 1

]
E

(−5)
12

So we can rewrite

A = QE
(5)
12

[
2 0
0 1

]
=

1

2


1 −1
1 −1
−1 −1
−1 −1

[2 5
0 1

]

(2) Check that the matrix in (1) satisfies QTQ = I

Solution:

QTQ =
1

2

[
1 1 −1 −1
−1 − −1 −1

]
1

2


1 −1
1 −1
−1 −1
−1 −1

 = I

Problem 3: Consider the linear transformation

φ : R3 → R2

such that:

• φ(e1) = 3e1 + 1e2

• φ(e2) = 2e1

• φ(e3) = e1 + e2

Here recall that we denote by ei the standard basis.

(1) Find the matrix A of φ with respect to the standard basis.

Solution: The above equations give us exactly the first second and third columns of the matrix A
respectively, so we get

A =

[
3 2 1
1 0 1

]

(2) Let v1 =

 1
0
−1

, v2 =

 0
1
−1

 and v3 =

 1
−1
−1

 and let w1 = φ(v1) and w2 = φ(v2). What is the

matrix B of φ with respect to the bases {vi} and {wj}.
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Solution:

w1 = φ(v1) = Av1 =

[
3 2 1
1 0 1

] 1
0
−1

 =

[
2
0

]

w2 = φ(v2) = Av2 =

[
3 2 1
1 0 1

] 0
1
−1

 =

[
1
−1

]
Further we compute

φ(v3) = Av3 =

[
3 2 1
1 0 1

] 1
−1
−1

 = 0

Consider the change of basis formula B = W−1AV for

V =

 1 0 1
0 1 −1
−1 −1 −1


W =

[
2 1
0 −1

]
So we compute

W−1 =

[
1/2 1/2
0 −1

]
So we get

B = W−1AV =

[
1 0 0
0 1 0

]
Note that this makes sense as φ(v1) = w1, φ(v2) = w2 and φ(v3) = 0.

Problem 4: Consider the matrix

A =

[
a b
c d

]
(1) Find the determinant using the cofactor formula along the first row.

Solution: We compute the required cofactors first

C11 = (−1)2det(M11) = det([d]) = d

C12 = (−1)3det(M12) = det([c]) = −c

So the cofactor formula becomes

det(A) = aC11 + bC12 = ad− bc

(2) Find the determinant using the cofactor formula along the second row.

Solution: We compute the required cofactors first

C21 = (−1)3det(M11) = det([b]) = −b
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C22 = (−1)4det(M22) = det([a]) = a

So the cofactor formula becomes

det(A) = cC21 + aC22 = −bc+ ad

(3) Use Cramer’s rule to find the inverse of the above matrix.

Solution: Note that from the above computations we have computed all cofactors, so we can put
them in the cofactor matrix

X =

[
C11 C21

C12 C22

]
=

[
d −b
−c a

]
Thus we get the inverse is given by

A−1 =
1

det(A)
X =

1

ad− bc

[
d −b
−c a

]

Problem 5: Consider the matrix 0 1 2
1 2 1
3 5 7


(1) Use the cofactor formula to compute the determinant.

Solution: We expand along th first row as this has a zero. We hence have

det(A) = 0 ∗ C11 + 1 ∗ C12 + 2 ∗ C13 = −(7− 3) + 2(5− 6) = −6

(2) Use row operations to compute the determinant.

Solution: We first do Gaussian elimination. Note that to start we need to swap the first 2 rows,
so

A 

1 2 1
0 1 2
3 5 7

 
1 2 1

0 1 2
0 −1 4

 
1 2 1

0 1 2
0 0 6


Note that here we have only swapped rows once, so we get

det(A) = −det(

1 2 1
0 1 2
0 0 6

) = −6

Here we use the determinant of upper triangular matrices is the product of diagonal entries

(3) Use the large 3! formula to compute the determinant.

Solution: We write all the terms of the formula to get

det(A) = 0 ∗ 2 ∗ 7 + 1 ∗ 1 ∗ 3 + 2 ∗ 1 ∗ 5− 0 ∗ 1 ∗ 5− 1 ∗ 1 ∗ 7− 2 ∗ 2 ∗ 3 = 0 + 3 + 10− 0− 7− 12 = −6
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Problem 6 Consider the matrix

A =

 1 0 0
2 −1 0
−1 −1 3


(1) Compute the eigenvalues of the matrix.

Solution: Recall that to consider the eigenvalues we need to consider the zeroes of det(A − λI),
so we compute

det(A− λI) = det(

1− λ 0 0
2 −1− λ 0
−1 −1 3− λ

) = (1− λ)(−1− λ)(3− λ)

Here again we use the determinant of a lower triangular matrix is the product of the diagonal
entries.
Thus from the above we see that the zeroes of the above are given by λ1 = 1, λ2 = −1 and λ3 = 3

(2) Compute eigenvectors for the above eigenvalues. Is there an eigenvector that is particularly
easy?

Solution: First we compute the eigenvector of λ1 = 1, ie we need to find elements in the nullspace
of

A− I =

 0 0 0
2 −2 0
−1 −1 2


Note that the sum of the rows are 0, so we get an eigenvector

1
1
1

.

Now we compute the eigenvector of λ2 = −1, so we need to find elements in the nullspace of

A+ I =

 2 0 0
2 0 0
−1 −1 4



Here we can get an eigenvector

0
4
1

.

Finally we compute the eigenvector of λ3 = 3, so we need to find elements in the nullspace of

A− 3I =

−2 0 0
2 −4 0
−1 −1 0



Note that the last colomn is 0, so we get an eigenvector

0
0
1

. Note that this eigenvector always

works for a lower triangular matrix.
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