Problem Set 5 Solutions

Problem 1: Consider four non-zero vectors $\boldsymbol{c}, \boldsymbol{n}, \boldsymbol{r}, \boldsymbol{l}$ in \mathbb{R}^{2}. What are the conditions these four vectors need to satisfy, in order for:

- \boldsymbol{c} to span the column space of A
- \boldsymbol{n} to span the nullspace space of A
- r to span the row space of A
- l to span the left nullspace of A
for some 2×2 matrix A. If these conditions are satisfied, write down such a matrix A. (keep the given vectors $\boldsymbol{c}, \boldsymbol{n}, \boldsymbol{r}, \boldsymbol{l}$ abstract, i.e. don't just plug in numbers).
(20 points)

Solution: By the orthogonality relations, we must have vanishing dot products

$$
\begin{aligned}
& \boldsymbol{c} \cdot \boldsymbol{l}=0 . \\
& \boldsymbol{n} \cdot \boldsymbol{r}=0 .
\end{aligned}
$$

Suppose that both of these conditions are satisfied, and denote the entries of \boldsymbol{r} and \boldsymbol{c} by the formulae

$$
\begin{gathered}
\boldsymbol{r}=\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right], \text { and } \\
\boldsymbol{c}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
\end{gathered}
$$

Consider then the matrix

$$
A=\boldsymbol{c r}^{T}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]\left[\begin{array}{ll}
r_{1} & r_{2}
\end{array}\right]=\left[\begin{array}{ll}
r_{1} c_{1} & r_{2} c_{1} \\
r_{1} c_{2} & r_{2} c_{2}
\end{array}\right] .
$$

It is clear that the row space of A is in the span of \boldsymbol{r}, and that the column space of A is in the span of \boldsymbol{c}. By the assumption that \boldsymbol{c} is not zero, the row space of A is equal to the span of \boldsymbol{r}, and similarly the assumption that \boldsymbol{r} is not zero implies that the column space of A is equal to the span of \boldsymbol{c}.

By the results proved in class, the left null space of A consists of all vectors perpendicular to \boldsymbol{c}. This is a 1 -dimensional space, so it is spanned by any non-zero element within it, such as \boldsymbol{l}. Similarly, the nullspace of A will be the 1-dimensional subspace of vectors perpendicular to \boldsymbol{r}. It follows that it is spanned by any non-zero vector perpendicular to \boldsymbol{r}, such as \boldsymbol{n}.

Grading rubric: 7 points for identifying the two dot products that must be 0.7 points for writing down the correct matrix $A .6$ points for correct explanations of why A satisfies the 4 required conditions.

Problem 2: Consider the vectors $\boldsymbol{a}_{1}=\left[\begin{array}{c}2 \\ -4 \\ 3 \\ -1\end{array}\right], \boldsymbol{a}_{2}=\left[\begin{array}{c}-5 \\ 3 \\ 2 \\ 0\end{array}\right], \boldsymbol{a}_{3}=\left[\begin{array}{c}-2 \\ 0 \\ 0 \\ 0\end{array}\right]$. Invent an algorithm (explain all the steps of the algorithm in words, and explain why it works) which takes general vectors $\boldsymbol{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ and $\boldsymbol{p}=\left[\begin{array}{l}p_{1} \\ p_{2} \\ p_{3} \\ p_{4}\end{array}\right]$ as inputs, and decides whether \boldsymbol{p} is the projection of \boldsymbol{b} onto the subspace spanned by $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$.

Solution: To decide whether \boldsymbol{p} is the projection of \boldsymbol{b}, you need to check two things:

- \boldsymbol{p} lies in the plane spanned by $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}$, i.e. there exist numbers α, β, γ such that:

$$
\alpha\left[\begin{array}{c}
2 \tag{1}\\
-4 \\
3 \\
-1
\end{array}\right]+\beta\left[\begin{array}{c}
-5 \\
3 \\
2 \\
0
\end{array}\right]+\gamma\left[\begin{array}{c}
-2 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right]
$$

Equating coefficients implies $-\alpha=p_{4}$, which forces $\alpha=-p_{4}$, and then:

$$
-4 \alpha+3 \beta=p_{2} \quad \text { and } \quad 3 \alpha+2 \beta=p_{3}
$$

i.e.:

$$
\beta=\frac{p_{2}-4 p_{4}}{3} \quad \text { and } \quad \beta=\frac{p_{3}+3 p_{4}}{2}
$$

This is only possible if $\frac{p_{2}-4 p_{4}}{3}=\frac{p_{3}+3 p_{4}}{2}$. There is no condition on the first entry of equality (11), since you can always pick γ to make the equality hold.

- $\boldsymbol{b}-\boldsymbol{p}$ must be perpendicular to all three of the given vectors. This means one needs to check the conditions:

$$
\begin{aligned}
& 2\left(b_{1}-p_{1}\right)-4\left(b_{2}-p_{2}\right)+3\left(b_{3}-p_{3}\right)-\left(b_{4}-p_{4}\right)=0 \\
& -5\left(b_{1}-p_{1}\right)+3\left(b_{2}-p_{2}\right)+2\left(b_{3}-p_{3}\right)=0 \\
& -2\left(b_{1}-p_{1}\right)=0
\end{aligned}
$$

Grading rubric: Any correct solution should obtain maximum points. Please be generous with partial credit for solutions that go halfway, but could be made to work.

Problem 3: Consider the line L spanned by $\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$ and the plane $V=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right.$ such that $\left.x+3 y+6 z=0\right\}$.

1. Compute any two basis vectors of the plane V.
(5 points)
2. Compute the projection matrices P_{L} onto L and P_{V} onto V.
(10 points)
3. Compute $P_{L}+P_{V}$. The answer should be a very nice matrix. Explain geometrically why you get this answer (hint: it has to do with the relationship between L and V).
(10 points)

Solution:

1. We may use, for example, $\left[\begin{array}{c}6 \\ 0 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$. Both of these vectors satisfy the condition $x+3 y+$ $6 z=0$, and so are elements of V. Since these vectors are not multiples of one another, they are linearly independent, and so span all of the 2-dimensional plane V. Many bases work equally well. Since V is the nullspace of $\left[\begin{array}{lll}1 & 3 & 6\end{array}\right]$, we could for example compute a basis by using the general algorithm from class for bases of nullspaces.

Grading rubric: 5 points for a correct basis with some justification. 3 points if the basis is correct but there is no justification.
2. Let A denote the matrix $\left[\begin{array}{cc}6 & 0 \\ 0 & 2 \\ -1 & -1\end{array}\right]$. Since V is the column space of A, and the columns of A are linearly independent, we may use the formula from class to compute

$$
P_{V}=A\left(A^{T} A\right)^{-1} A^{T}=\frac{1}{46}\left[\begin{array}{ccc}
45 & -3 & -6 \\
-3 & 37 & -18 \\
-6 & -18 & 10
\end{array}\right]
$$

Similarly, let B denote the matrix $\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$, so that L is the column space of B. We calculate.

$$
P_{L}=B\left(B^{T} B\right)^{-1} B^{T}=B(46)^{-1} B^{T}=\frac{1}{46}\left[\begin{array}{ccc}
1 & 3 & 6 \\
3 & 9 & 18 \\
6 & 18 & 36
\end{array}\right]
$$

Grading rubric: 4 points for calculating P_{L} correctly. 4 points for calculating P_{V} correctly using whatever basis was determined in part 1 (even if this basis is incorrect because of a mistake in part 1). 2 points for justifying why the calculation of P_{V} works.
3. We see that $P_{L}+P_{V}$ is the 3×3 identity matrix. This is because the vector L is normal (perpendicular) to the plane V. Projecting a vector \mathbf{w} onto the plane V is accomplished by subtracting a vector orthogonal to the V, specifically $P_{L} \mathbf{w}$, from \mathbf{w}.

Grading rubric: 5 points for writing that L is perpendicular for V. The remaining 5 points for noticing that $P_{L}+P_{V}$ is the identity. They should notice that this is supposed to be true even if they do earlier parts wrong, so no credit for simply adding incorrect P_{L} and P_{V} from an incorrect part 2.

Problem 4: Consider the following lines L_{1} and L_{2} in 3-dimensional space:

$$
L_{1}=\left\{\left[\begin{array}{l}
x \\
x \\
x
\end{array}\right] \quad \text { for } x \in \mathbb{R}\right\} \quad \text { and } \quad L_{2}=\left\{\left[\begin{array}{c}
y \\
2 y-1 \\
3 y
\end{array}\right] \text { for } y \in \mathbb{R}\right\}
$$

1. Which of these is a subspace and which is not?
(5 points)
2. Use least squares to compute the smallest possible distance from a point on the line which is not a subspace to the line which is a subspace.
(5 points)
3. By minimizing the quantity in part (2), find the points $P \in L_{1}$ and $Q \in L_{2}$ for which the distance $|P Q|$ is minimal among all possible choices of a point on either line.
4. What can you say about the line $P Q$ in relation to the lines L_{1} and L_{2} ?

Solution:

1. L_{1} is a subspace since it is the column space of the matrix $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. On the other hand, L_{2} is not a subspace because it does not contain the origin.

Grading rubric: 2 points for a correct justification that L_{1} is a subspace. 3 points for a correct justification that L_{2} is not a subspace.
2. Fix a number y, and consider the fixed point $Q=\left[\begin{array}{c}y \\ 2 y-1 \\ 3 y\end{array}\right]$ in L_{2}. We seek to determine the distance of Q from L_{1}.

Let P denote the point on L_{1} that is closest to Q. This is just the projection of Q onto L_{1}. Let a denote

$$
a=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],
$$

so that a is a basis of L_{1}. Using the formula from class, we calculate

$$
P=P_{L_{1}} Q=a \frac{a^{T} Q}{a^{T} a}=a \frac{y+2 y-1+3 y}{3}=a \frac{6 y-1}{3}=\left[\begin{array}{l}
2 y-1 / 3 \\
2 y-1 / 3 \\
2 y-1 / 3
\end{array}\right]
$$

The distance between P and Q is then given by $|P Q|=\sqrt{(2 y-1 / 3-y)^{2}+(2 y-1 / 3-(2 y-1))^{2}+(2 y-1 / 3-3 y)^{2}}=\sqrt{(y-1 / 3)^{2}+(2 / 3)^{2}+(-y-1 / 3)^{2}}$

This simplifies to

$$
|P Q|=\sqrt{y^{2}-2 y / 3+1 / 9+4 / 9+y^{2}+2 y / 3+1 / 9}=\sqrt{2 y^{2}+6 / 9}=\sqrt{2 y^{2}+2 / 3} .
$$

Grading rubric: 2 points for correct answer. 3 points for a correct explanation.
3. The quantity $\sqrt{2 y^{2}+2}$ is minimized when $y=0$, which is when Q is the point

$$
Q=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right] .
$$

In the previous problem we also calculated the projection of Q onto L_{1} to be given by

$$
P=\left[\begin{array}{l}
2 y-1 / 3 \\
2 y-1 / 3 \\
2 y-1 / 3
\end{array}\right]=\left[\begin{array}{l}
-1 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]
$$

Grading rubric: 3 points for correctly finding the value of Q that minimizes what was calculated in 2. 2 points for finding the corresponding point P.
4. The line $P Q$ is perpendicular to both L_{1} and L_{2}. For example, if the angle with L_{1} were not $\frac{\pi}{2}$, it would be possible to move P while fixing Q and obtain a strictly shorter distance $|P Q|$.

Grading rubric: 5 points for noting that $P Q$ is perpendicular to L_{1} and L_{2}. No justification needed.

Problem 5: The equation of a parabola in the plane is $y=a x^{2}+b x+c$.

1. Compute a, b, c such that the parabola passes through the points $(1,0),(2,4),(-1,-2)$ (don't just guess, use linear algebra to solve for $a, b, c)$.
(10 points)
2. Compute a, b, c such that the parabola is the best fit for the points $(1,0),(2,4),(-1,-2),(-2,5)$: this means that the sum of the squares of the vertical distances between the parabola and the four given points should be minimum (Hint: this is done similarly to the example of fitting a line, that we did at the end of Lecture 13).
(10 points)

Solution:

1. Plugging in the point $(1,0)$, we learn that

$$
0=a+b+c
$$

Plugging in the point $(2,4)$, we learn that

$$
4=4 a+2 b+c
$$

Finally, plugging in the point $(-1,-2)$, we learn that

$$
-2=a-b+c
$$

We can solve this by row reducing the following augmented matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
4 & 2 & 1 & 4 \\
1 & -1 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & -2 & -3 & 4 \\
1 & -1 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & -2 & -3 & 4 \\
0 & -2 & 0 & -2
\end{array}\right]
$$

From the last row we see that $-2 b=-2$, so $b=1$. From the middle row we see that

$$
4=-2 b-3 c=-2-3 c
$$

and so $c=2$. Finally, the top row says that $0=a+b+c=a-1+2$, so $a=-1$.
The final answer is $a=-1, b=1$, and $c=2$.

Grading rubric: 5 points for setting up the correct system of equations. 3 points for attempting to solve the system using some techniques from this class. 2 points for the correct final answer.
2. Plugging in the first three points, we obtain as in part 1 the equations

$$
\begin{gathered}
a+b+c=0 \\
4 a+2 b+c=4 \\
a-b+c=-2
\end{gathered}
$$

Plugging in the additional point $(-2,5)$ gives the equation

$$
4 a-2 b+c=5 .
$$

Let A denote the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
4 & 2 & 1 \\
1 & -1 & 1 \\
4 & -2 & 1
\end{array}\right],
$$

and let b denote the vector

$$
b=\left[\begin{array}{c}
0 \\
4 \\
-2 \\
5
\end{array}\right] .
$$

We would like to solve the equation

$$
A\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=b,
$$

but no solutions exist. We can find the best fit parabola, according to least squares distance, by solving instead the equation

$$
A\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=P_{C(A)} b
$$

By the formula $P_{C(A)}=A\left(A^{T} A\right)^{-1} A^{T}$, the desired vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ can be calculated as

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} b=\frac{1}{6}\left[\begin{array}{c}
11 \\
0 \\
-17
\end{array}\right] .
$$

Thus, the best fit parabola, according to sum of squares of vertical distance, is given by

$$
y=\frac{11 x^{2}-17}{6}
$$

Grading rubric: 5 points for setting up the correct 4 linear equations. 3 points for realizing the formula $\left(A^{T} A\right)^{-1} A^{T} b$ with the correct values of the matrix A and vector b. 2 points for calculating correctly at the end.

