Recitation 9. November 12

Focus: Singular Value Decomposition.

Recall that for a matrix A the Singular Value Decomposition (SVD) is an expression $A=U \Sigma V^{T}$ where U, V are orthogonal matrices and Σ is diagonal.
The Singular Values denoted σ_{i} are the diagonal entries of Σ.
The Pseudo-inverse of A is given in terms of the SVD by $A^{+}=V \Sigma^{+} U^{T}$ where Σ^{+}has diagonal entries $\frac{1}{\sigma_{i}}$. $A^{+} A$ and $A A^{+}$are the projections onto $C\left(A^{T}\right)$ and $C(A)$ respectively.

1. Consider the matrix

$$
A=\left[\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right]
$$

- Compute the Singular Value Decomposition of A.
- Compute the Psuedo-inverse A^{+}. Then compute the inverse A^{-1} by another method. How do they compare?

Solution:

2. 3. Find the maximum of the function

$$
\frac{3 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}
$$

by expressing it in the form $\frac{x^{T} S x}{x^{T} x}$ for a symmetric matrix S and using the relation of this expression to the eigenvalues of S. For what values of $\left(x_{1}, x_{2}\right)$ is the maximum achieved?
2. Find the minimum of the function

$$
\sqrt{\frac{\left(x_{1}+4 x_{2}\right)^{2}}{x_{1}^{2}+x_{2}^{2}}}
$$

by expressing it in the form $\frac{\|A x\|}{\|x\|}$ and using the relation of this expression to the singular values of A.

Solution:

3. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

1. Compute its singular value decomposition
2. Use this to find the closest vector to $\left[\begin{array}{c}3 \\ -1\end{array}\right]$ in the column space of A and in the column space of A^{T}. How else could you compute these vectors? Do the other methods agree?

Solution:

4. 5. If $A=Q R$ is a Gram-Schmidt Orthogonalization of A (i.e. Q is an orthogonal matrix), how does the SVD of A relate to the SVD of R ?
1. If $A=U \Sigma V^{T}$ is a SVD of a matrix A, and Q_{1}, Q_{2} are two orthogonal matrices, how do the singular values σ_{i} of $Q_{1} A Q_{2}^{-1}$ relate to those of A ?

Solution:

