Final Exam Review Session \#1

December 12, 2019

1. Compute the $L D U$ factorization of the following matrix:

$$
X=\left[\begin{array}{ccc}
-1 & 0 & 2 \\
2 & 1 & -1 \\
-3 & 4 & 2
\end{array}\right]
$$

Solution:

$$
\left[\begin{array}{ccc}
-1 & 0 & 2 \\
2 & 1 & -1 \\
-3 & 4 & 2
\end{array}\right] \xrightarrow{r_{2} \mapsto 2 r_{1}+r_{2}}\left[\begin{array}{ccc}
-1 & 0 & 2 \\
2 & 1 & -1 \\
0 & 4 & -4
\end{array}\right] \xrightarrow{r_{3} \mapsto-3 r_{1}+r_{3}}\left[\begin{array}{ccc}
-1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 4 & -4
\end{array}\right] \xrightarrow{r_{3} \mapsto-4 r_{2}+r_{3}}\left[\begin{array}{ccc}
-1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & -16
\end{array}\right],
$$

So

$$
\left[\begin{array}{ccc}
-1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & -16
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -4 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 2 \\
2 & 1 & -1 \\
-3 & 4 & 2
\end{array}\right] .
$$

(Recall that matrix multiplication on the left corresponds to taking linear combinations of the rows!) That is, letting $Y=\left[\begin{array}{ccc}-1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & -16\end{array}\right]$, we have that $Y=E_{32}^{(-4)} E_{31}^{(-3)} E_{21}^{(2)} X$. However, $Y=D U$ where $D=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -16\end{array}\right]$ and $U=\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$, so letting $L=\left(E_{32}^{(-4)} E_{31}^{(-3)} E_{21}^{(2)}\right)^{-1}=E_{21}^{(-2)} E_{31}^{(3)} E_{32}^{(4)}$ it follows that $X=L D U$. Explicitly,

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 4 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
3 & 4 & 1
\end{array}\right] .
$$

2. (a) Find a basis for the null space of the following matrix:

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & 3 \\
2 & -6 & 1 & -3 \\
3 & 0 & 6 & 9
\end{array}\right]
$$

Solution: We perform Gauss-Jordan elimination to find the reduced row echelon form of A :

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & 3 \\
2 & -6 & 1 & -3 \\
3 & 0 & 6 & 9
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & 3 \\
2 & -6 & 1 & -3 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & 3 \\
0 & -6 & -3 & -9 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 2 & 1 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & \frac{1}{2} & \frac{3}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Letting $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ be a general element of the null space, we find that

$$
x_{1}=-2 x_{3}-3 x_{4}
$$

and

$$
x_{2}=-\frac{1}{2} x_{3}-\frac{3}{2} x_{4},
$$

$$
\boldsymbol{x}=x_{3}\left[\begin{array}{c}
-2 \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right]-x_{4}\left[\begin{array}{c}
-3 \\
-\frac{3}{2} \\
0 \\
1
\end{array}\right] .
$$

Therefore $\left\{\left[\begin{array}{c}-2 \\ -\frac{1}{2} \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ -\frac{3}{2} \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for $N(A)$.
(b) Let

$$
\boldsymbol{b}=A\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]
$$

Find the general solution $\boldsymbol{v}_{\text {general }}$ to $A \boldsymbol{v}=\boldsymbol{b}$.

Solution: We have that the general solution $\boldsymbol{v}_{\text {general }}=\boldsymbol{v}_{\text {particular }}+\boldsymbol{w}_{\text {general }}$, where $\boldsymbol{v}_{\text {particular }}$ is a specific solution to $A \boldsymbol{v}=\boldsymbol{b}$ and $\boldsymbol{w}_{\text {general }}$ is the general solution to $A \boldsymbol{w}=0$ (i.e. a general element of $N(A)$). Because $\boldsymbol{b}=A\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]$, it follows that $\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]$ is a particular solution. Therefore, using our computation from (a) we find that

$$
\boldsymbol{v}_{\text {general }}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+\alpha\left[\begin{array}{c}
-2 \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{c}
-3 \\
-\frac{3}{2} \\
0 \\
1
\end{array}\right]
$$

where $\alpha, \beta \in \mathbb{R}$.
3. (a) Let $\boldsymbol{v}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$, and $\boldsymbol{v}_{3}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$, and let $B=\left[\begin{array}{lll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3}\end{array}\right]$. Compute the QR factorization of B.

Solution: We perform the Gram-Schmidt process:

$$
\begin{gathered}
\boldsymbol{v}_{1} \rightarrow \boldsymbol{w}_{1}=\boldsymbol{q}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} \\
0
\end{array}\right] \\
\boldsymbol{v}_{2} \rightarrow \boldsymbol{w}_{2}=\boldsymbol{v}_{2}-\left(\boldsymbol{v}_{2} \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]+\frac{4}{5}\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{5} \\
\frac{2}{5} \\
-1
\end{array}\right] \\
\boldsymbol{w}_{2} \rightarrow \boldsymbol{q}_{2}=\frac{\sqrt{5}}{3}\left[\begin{array}{c}
\frac{4}{5} \\
\frac{2}{5} \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3 \sqrt{5}} \\
\frac{2}{3 \sqrt{5}} \\
-\frac{\sqrt{5}}{3}
\end{array}\right]=\frac{1}{3 \sqrt{5}}\left[\begin{array}{c}
4 \\
2 \\
-5
\end{array}\right] \\
\boldsymbol{v}_{3} \rightarrow \boldsymbol{w}_{3}=\boldsymbol{v}_{3}-\left(\boldsymbol{v}_{3} \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}-\left(\boldsymbol{v}_{3} \cdot \boldsymbol{q}_{2}\right) \boldsymbol{q}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{5}{9} \\
\frac{2}{9} \\
-\frac{5}{9}
\end{array}\right]=\frac{2}{9}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
\end{gathered}
$$

$$
\boldsymbol{w}_{3} \rightarrow \boldsymbol{q}_{3}=\frac{1}{3}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

We therefore set

$$
Q=\left[\begin{array}{ccc}
\frac{1}{\sqrt{5}} & \frac{4}{3 \sqrt{5}} & \frac{2}{3} \\
-\frac{2}{\sqrt{5}} & \frac{2}{3 \sqrt{5}} & \frac{1}{3} \\
0 & -\frac{\sqrt{5}}{3} & \frac{2}{3}
\end{array}\right] .
$$

The preceding computations tell us that

$$
Q=B D_{1}^{(1 / \sqrt{5})} E_{12}^{(4 / \sqrt{5})} D_{2}^{\sqrt{5} / 3} E_{13}^{(\sqrt{5})} E_{23}^{(\sqrt{5} / 3)} D_{3}^{(3 / 2)}
$$

so letting $R=\left(D_{1}^{(1 / \sqrt{5})} E_{12}^{(4 / \sqrt{5})} D_{2}^{\sqrt{5} / 3} E_{13}^{(\sqrt{5})} E_{23}^{(\sqrt{5} / 3)} D_{3}^{(3 / 2)}\right)^{-1}$, we have that $B=Q R$. Explicitly,

$$
R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{2}{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -\sqrt{5} \\
0 & 1 & -\frac{\sqrt{5}}{3} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{3}{\sqrt{5}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -\frac{4}{\sqrt{5}} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{5} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{5} & -\frac{4}{\sqrt{5}} & -\sqrt{5} \\
0 & \frac{3}{\sqrt{5}} & -\frac{\sqrt{5}}{3} \\
0 & 0 & \frac{2}{3}
\end{array}\right] .
$$

(b) Let U be the subspace of \mathbb{R}^{3} spanned by \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. Compute P_{U}, the projection onto U.

Solution: Let $A=\left[\begin{array}{ll}\boldsymbol{q}_{1} & \boldsymbol{q}_{2}\end{array}\right]$. Then, by the orthonormality of $\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$, we see that

$$
\begin{gathered}
P_{U}=A\left(A^{T} A\right)^{-1} A^{T}=A A^{T}=\boldsymbol{q}_{1} \boldsymbol{q}_{1}^{T}+\boldsymbol{q}_{2} \boldsymbol{q}_{2}^{T} \\
=\left[\begin{array}{ccc}
\frac{1}{5} & -\frac{2}{5} & 0 \\
-\frac{2}{5} & \frac{4}{5} & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
\frac{16}{45} & \frac{8}{45} & -\frac{4}{9} \\
\frac{8}{45} & \frac{4}{45} & -\frac{2}{9} \\
-\frac{4}{9} & -\frac{2}{9} & \frac{5}{9}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{5}{9} & -\frac{2}{9} & -\frac{4}{9} \\
-\frac{2}{9} & \frac{8}{9} & -\frac{2}{9} \\
-\frac{4}{9} & -\frac{2}{9} & \frac{5}{9}
\end{array}\right] .
\end{gathered}
$$

(c) Let W be the orthogonal complement of U. What is a basis for W ? Compute P_{W}, the projection onto W.

Solution: We see that $\left\{\boldsymbol{q}_{3}\right\}$ is a basis for W. Then,

$$
P_{W}=\boldsymbol{q}_{3} \boldsymbol{q}_{3}^{T}=\left[\begin{array}{ccc}
\frac{4}{9} & \frac{2}{9} & \frac{4}{9} \\
\frac{2}{9} & \frac{1}{9} & \frac{2}{9} \\
\frac{4}{9} & \frac{2}{9} & \frac{4}{9}
\end{array}\right]
$$

Alternatively, we could have observed that P_{W} must equal $I-P_{U}$ because U and W are orthocomplements of each other.
4. Let

$$
T=\left[\begin{array}{ccc}
-2 & 3 & -4 \\
1 & -2 & 3 \\
3 & -4 & 4
\end{array}\right]
$$

Compute $\operatorname{det}(T)$ by row operations, cofactor expansion, and the big formula.

Solution: We first compute the determinant of T by row operations:

$$
\left[\begin{array}{ccc}
-2 & 3 & -4 \\
1 & -2 & 3 \\
3 & -4 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & 3 \\
-2 & 3 & -4 \\
3 & -4 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & -1 & 2 \\
0 & 2 & -5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & -1 & 2 \\
0 & 0 & -1
\end{array}\right]
$$

The determinant of T is therefore (-1) (for the row swap done first) multiplied by $1(-1)(-1)=1$. Thus $\operatorname{det}(T)=-1$.
We next compute the determinant by cofactor expansion along the second row:

$$
\operatorname{det}(T)=(-1)^{2+1}(1)(12-16)+(-1)^{2+2}(-2)(-8+12)+(-1)^{2+3}(3)(8-9)=4-8+3=-1
$$

Finally, we compute the determinant by using the big formula:

$$
\begin{gathered}
\operatorname{det}(T)=(-1)^{\operatorname{sgn} 1}(-2)(-2)(4)+(-1)^{\operatorname{sgn}(132)}(3)(3)(3)+(-1)^{\operatorname{sgn}(123)}(1)(-4)(-4) \\
+(-1)^{\operatorname{sgn}(12)}(1)(3)(4)+(-1)^{\operatorname{sgn}(23)}(-2)(-4)(3)+(-1)^{\operatorname{sgn}(13)}(3)(-2)(-4) \\
=16+27+16-12-24-24=-1
\end{gathered}
$$

Note that here, the determinant was the sum of the products of all the diagonals of T (reversing the signs for diagonals of the opposite direction), but this does not work for matrices of higher dimensions (for one, there are fewer diagonals than permutations in general).

