Final Exam Review Session #1

December 12, 2019

1. Compute the LDU factorization of the following matrix:

$$X = \begin{bmatrix} -1 & 0 & 2\\ 2 & 1 & -1\\ -3 & 4 & 2 \end{bmatrix}.$$

2. (a) Find a basis for the null space of the following matrix:

$$A = \begin{bmatrix} 1 & 0 & 2 & 3\\ 0 & 2 & 1 & 3\\ 2 & -6 & 1 & -3\\ 3 & 0 & 6 & 9 \end{bmatrix}$$

(b) Let

$$\boldsymbol{b} = A \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}.$$

Find the general solution $\boldsymbol{v}_{general}$ to $A\boldsymbol{v} = \boldsymbol{b}$.

3. (a) Let $\boldsymbol{v}_1 = \begin{bmatrix} 1\\ -2\\ 0 \end{bmatrix}$, $\boldsymbol{v}_2 = \begin{bmatrix} 0\\ 2\\ -1 \end{bmatrix}$, and $\boldsymbol{v}_3 = \begin{bmatrix} -1\\ 2\\ 1 \end{bmatrix}$, and let $B = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \boldsymbol{v}_3 \end{bmatrix}$. Compute the QR factorization of B.

(b) Let U be the subspace of \mathbb{R}^2 spanned by \boldsymbol{v}_1 and \boldsymbol{v}_2 . Compute P_U , the projection onto U.

(c) Let W be the orthogonal complement of U. What is a basis for W? Compute P_W , the projection onto W.

4. Let

$$T = \begin{bmatrix} -2 & 3 & -4 \\ 1 & -2 & 3 \\ 3 & -4 & 4 \end{bmatrix}.$$

Compute det(T) by row operations, cofactor expansion, and the big formula.