# MIT 18.06 Exam 1, Fall 2022 <br> Johnson 



Recitation:

## Problem $1(6+6+6+6+6+6=36$ points $):$

Fill in the blanks:
(a) Any solution $x$ to $A x=b$ (if it exists) is always a sum of a vector in the
$\qquad$ space of $A$ plus a vector in the $\qquad$ space of $A$.
(b) $A x=b$ is solvable if (and only if) $b$ is orthogonal to every vector in the
$\qquad$ space of $A$.
(c) If $A$ is a $4 \times 3$ matrix and $A x=b$ is not solvable for some $b$ and the solutions are not unique when they exist, possible values for the rank of $A$ are $\qquad$ (list all possibilities).
(d) $C(A B)$ must $\quad$ (contain $\supseteq /$ be contained in $\subseteq /$ equal $=$ ) the column space of $\qquad$ $(A$ or $B)$ for all $4 \times 4$ matrices $A$ and $B$.
(e) If $x, y, z \in \mathbb{R}^{n}$ are $n$-component vectors, then the number of operations to compute $x y^{T} z$ scales proportional to $\qquad$ $\left(n, n^{2}\right.$, or $\left.n^{3}\right)$ for large $n$ if you compute it in the order $\left(x y^{T}\right) z$, or proportional to $\quad\left(n, n^{2}\right.$, or $n^{3}$ ) if you compute it in the order $x\left(y^{T} z\right)$.
(f) If $x_{1}$ and $x_{2}$ are both solutions to $A x=b$, then the vector $x_{1}-x_{2}$ must be in the $\qquad$ space of $A$.
(blank page for your work if you need it)

## Problem $2(6+11+6+11=34$ points $)$ :

If

$$
\underbrace{\left(\begin{array}{lllll}
1 & 2 & 4 & 2 & 5 \\
& 2 & 3 & 5 & 6 \\
& & 3 & 4 & 3 \\
& & & 4 & 3 \\
& & & & 5
\end{array}\right)}_{A} B \underbrace{\left(\begin{array}{lll}
4 & 1 & 1 \\
& 1 & 1 \\
& & 2
\end{array}\right)}_{C} x=b
$$

has the complete solution

$$
x=\left(\begin{array}{l}
7 \\
1 \\
2
\end{array}\right)+\alpha_{1}\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)
$$

for any scalar $\alpha_{1}$, then:
(a) What is the size and rank of $B$ ?
(b) The $\qquad$ space of $B$ must be spanned by the basis $\qquad$
(c) In part (b), you could alternatively have found a basis for the space of $B$, which is also fully determined by the information given because it is $\qquad$ to your answer from (b).
(d) Give a possible matrix $B$.
(blank page for your work if you need it)

## Problem 3 ( $5+6+13+6=30$ points):

Consider the matrix $A=B C D$ given by:

$$
A=\underbrace{\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
& 1 & 0 & 3 \\
& & -1 & 0 \\
& & & 1
\end{array}\right)}_{B} \underbrace{\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 2 & 0 & 1 \\
0 & 2 & -1 & 0 \\
1 & 4 & 0 & 1
\end{array}\right)}_{C} \underbrace{\left(\begin{array}{llll}
2 & & & \\
& 1 & & \\
& & -2 & \\
& & & 3
\end{array}\right)}_{D} .
$$

(a) Write $A^{-1}$ in terms of $B^{-1}, C^{-1}$, and $D^{-1}$ (without computing any numbers).
(b) To compute the $\operatorname{sum} x$ of the four columns of $A^{-1}$, you could solve $A x=b$ for $x$ using what right-hand-side vector $b$ ?
(c) Compute the sum of the columns of $A^{-1}$.
(d) A basis for the column space $C(A)$ is $\qquad$
(blank page for your work if you need it)

