MIT 18.06 Exam 1, Fall 2022 Johnson

Your name: (printed)		
Student ID:		

Recitation:

Problem 1 (6+6+6+6+6+6=36 points):

Fill in the blanks:

- (a) Any solution x to Ax = b (if it exists) is always a sum of a vector in the ______ space of A plus a vector in the ______ space of A.
- (b) Ax = b is solvable if (and only if) b is orthogonal to every vector in the ______ space of A.
- (c) If A is a 4×3 matrix and Ax = b is *not* solvable for some b and the solutions are *not* unique when they exist, possible values for the rank of A are _____ (list all possibilities).
- (d) C(AB) must _____ (contain \supseteq / be contained in \subseteq / equal =) the column space of _____ (A or B) for all 4×4 matrices A and B.
- (e) If $x, y, z \in \mathbb{R}^n$ are *n*-component vectors, then the number of operations to compute $xy^T z$ scales proportional to ______ $(n, n^2, \text{ or } n^3)$ for large *n* if you compute it in the order $(xy^T)z$, or proportional to ______ $(n, n^2, \text{ or } n^3)$ if you compute it in the order $x(y^Tz)$.
- (f) If x_1 and x_2 are *both* solutions to Ax = b, then the vector $x_1 x_2$ must be in the ______ space of A.

(blank page for your work if you need it)

Problem 2 (6+11+6+11=34 points):

$$\underbrace{\begin{pmatrix} 1 & 2 & 4 & 2 & 5 \\ & 2 & 3 & 5 & 6 \\ & & 3 & 4 & 3 \\ & & & 4 & 3 \\ & & & & 5 \end{pmatrix}}_{A} B \underbrace{\begin{pmatrix} 4 & 1 & 1 \\ & 1 & 1 \\ & & & 2 \end{pmatrix}}_{C} x = b$$

has the complete solution

If

$$x = \begin{pmatrix} 7\\1\\2 \end{pmatrix} + \alpha_1 \begin{pmatrix} 2\\3\\-4 \end{pmatrix},$$

for any scalar α_1 , then:

- (a) What is the size and rank of B?
- (b) The $___$ space of B must be spanned by the basis $___$.
- (c) In part (b), you could **alternatively** have found a basis for the ______ space of *B*, which is also fully determined by the information given because it is ______ to your answer from (b).
- (d) Give a possible matrix B.

(blank page for your work if you need it)

Problem 3 (5+6+13+6=30 points):

Consider the matrix A = BCD given by:

$$A = \underbrace{\begin{pmatrix} 1 & 0 & 2 & 0 \\ & 1 & 0 & 3 \\ & & -1 & 0 \\ & & & 1 \end{pmatrix}}_{B} \underbrace{\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 1 & 4 & 0 & 1 \end{pmatrix}}_{C} \underbrace{\begin{pmatrix} 2 & & \\ & 1 & & \\ & & -2 & \\ & & & 3 \end{pmatrix}}_{D}$$

- (a) Write A^{-1} in terms of B^{-1} , C^{-1} , and D^{-1} (without computing any numbers).
- (b) To compute the **sum** x of the four columns of A^{-1} , you could solve Ax = b for x using what right-hand-side vector b?
- (c) Compute the sum of the columns of A^{-1} .
- (d) A basis for the column space C(A) is _____.

(blank page for your work if you need it)