MIT 18.06 Exam 1 Solutions, Fall 2022 Johnson

Problem $1(6+6+6+6+6+6=36$ points $):$

Fill in the blanks:
(a) Any solution x to $A x=b$ (if it exists) is always a sum of a vector in the
\qquad space of A plus a vector in the \qquad space of A.
(b) $A x=b$ is solvable if (and only if) b is orthogonal to every vector in the —_ space of A.
(c) If A is a 4×3 matrix and $A x=b$ is not solvable for some b and the solutions are not unique when they exist, possible values for the rank of A are \qquad (list all possibilities).
(d) $C(A B)$ must \quad (contain $\supseteq /$ be contained in $\subseteq /$ equal $=$) the column space of $\quad(A$ or $B)$ for all 4×4 matrices A and B.
(e) If $x, y, z \in \mathbb{R}^{n}$ are n-component vectors, then the number of operations to compute $x y^{T} z$ scales proportional to $\quad\left(n, n^{2}\right.$, or $\left.n^{3}\right)$ for large n if you compute it in the order $\left(x y^{T}\right) z$, or proportional to $\quad\left(n, n^{2}\right.$, or n^{3}) if you compute it in the order $x\left(y^{T} z\right)$.
(f) If x_{1} and x_{2} are both solutions to $A x=b$, then the vector $x_{1}-x_{2}$ must be in the \qquad space of A.

Solutions:

(a) Any solution is a sum of a vector in the null space of A plus a vector in the row space of A. The reason for this is that $N(A)$ and $C\left(A^{T}\right)$ are orthogonal complements, so together they span the whole space of possible "inputs" x to A (i.e. all of \mathbb{R}^{n} if A is $m \times n$).
(b) b must be orthogonal to every vector in the left nullspace of $A-$ since $N\left(A^{T}\right)$ is the orthogonal complement of $C(A)$, being orthogonal to $N\left(A^{T}\right)$ is equivalent to being in $C(A)$, and the condition for $A x=b$ to be solvable is for $b \in C(A)$.
(c) A must be rank deficient for the solutions to not be unique and not necessarily exist, so the rank must be $\mathbf{0}, \mathbf{1}$, or $\mathbf{2}$.
(d) $C(A B)$ must be contained in the column space of A, i.e. $C(A B) \subseteq$ $C(A)$. Intuitively, the "output" of the linear operator $A B$ comes from A, so its column space must be related to that of A (not B, which affects the "inputs" to A). More precisely, $C(A B)$ consists of vectors $A B x$ for any x, but $A B x=A(B x)$ is A times some vector, so it must be in $C(A)$, and hence $C(A B) \subseteq C(A)$.

The converse is not true unless B is invertible, however: $C(A)=C(A B)$ only if B is an invertible matrix, since that's the only way you can go from any vector $A y$ in $C(A)$ to a vector $A y=A B$ (some vector) in $C(A B)$, by setting $($ some vector $)=B^{-1} y$.
(e) $\left(x y^{T}\right) z$ requires $\sim n^{2}$ arithmetic operations (forming the $n \times n$ matrix $x y^{T}$ requires n^{2} multiplications, and then multiplying a matrix times the vector z is also $\sim n^{2}$), while $x\left(y^{T} z\right)$ requires $\sim n$ arithmetic operations (the dot product $y^{T} z$ costs $\sim n$, and then multiplying the resulting scalar by the vector x costs another n multiplications).
(f) $x_{1}-x_{2}$ must be in the null space of A. The only way $A x=b$ can have multiple solutions is for them to differ by something in $N(A)$. We can see this explicitly from $A\left(x_{1}-x_{2}\right)=A x_{1}-A x_{2}=b-b=\overrightarrow{0}$. (Many people answered "column space" here, which is a nonsensical answer: the column space contains vectors like b, which is not even the right "shape" for x if A is non-square.)

Hot tip: remember that for an $m \times n$ matrix takes inputs (" x ") in \mathbb{R}^{n} to outputs $(b=A x)$ in \mathbb{R}^{m}. The "input" subspaces of \mathbb{R}^{n} are $N(A)$ and $C\left(A^{T}\right)$, while the "output" subspaces of \mathbb{R}^{m} are $C(A)$ and $N\left(A^{T}\right)$. So if any problem is asking you about "inputs" (or things you add or dotproduct with inputs), like parts (a) or (f), it must involve $N(A)$ and/or $C\left(A^{T}\right)$. And if any problem is asking you about "outputs" (or things you add or dot-product with outputs), like part (b), it must be asking about $C(A)$ and $N\left(A^{T}\right)$.

Another common mistake: many people also write something like "solution space" for some of the answers, which I guess means the set of solutions x to $A x=b$. First, this makes no sense because the solutions depend on both A and b, so how could there be a "solution space of A " by itself? Second, the set of solutions x is not generally a subspace, because it does not include $x=0$ (except in the special case $b=0$, of course).

Problem $2(6+11+6+11=34$ points $)$:

If

$$
\underbrace{\left(\begin{array}{lllll}
1 & 2 & 4 & 2 & 5 \\
& 2 & 3 & 5 & 6 \\
& & 3 & 4 & 3 \\
& & & 4 & 3 \\
& & & & 5
\end{array}\right)}_{A} B \underbrace{\left(\begin{array}{lll}
4 & 1 & 1 \\
& 1 & 1 \\
& & 2
\end{array}\right)}_{C} x=b
$$

has the complete solution

$$
x=\left(\begin{array}{l}
7 \\
1 \\
2
\end{array}\right)+\alpha_{1}\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)
$$

for any scalar α_{1}, then:
(a) What is the size and rank of B ?
(b) The \qquad space of B must be spanned by the basis \qquad
(c) In part (b), you could alternatively have found a basis for the space of B, which is also fully determined by the information given because it is \qquad to your answer from (b).
(d) Give a possible matrix B.

Solutions:

(a) B must be 5×3 in order for $A B C$ to make sense. From the complete solution, we have a 1 d nullspace, so the 5×3 matrix $A B C$ must have rank $r=2$. A and C are clearly invertible matrices (upper triangular with all of their pivots), so they can't add any new vectors to the nullspace: the nullspace must come from B, so B must also be rank 2.
(b) As in the previous part, we know a vector in the nullspace from the α_{1} term of the complete solution: we must have

$$
A B C\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)=\overrightarrow{0} \Longrightarrow B\left[C\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)\right]=A^{-1} \overrightarrow{0}=\overrightarrow{0}
$$

but that means that

$$
C\left(\begin{array}{c}
2 \\
3 \\
-4
\end{array}\right)=\left(\begin{array}{c}
4 \cdot 2+3-4 \\
3-4 \\
2 \cdot(-4)
\end{array}\right)=\left(\begin{array}{c}
7 \\
-1 \\
-8
\end{array}\right)
$$

must be in $N(B)$. Hence $[7,-1,-8]$ is a basis for the 1 d null space of B.
(c) Once we know $N(B)$, we also know the row space of B, because the row space $C\left(B^{T}\right)$ is orthogonal to $N(B)$. That is, we just need the 2 d subspace (plane) of vectors orthogonal to $[7,-1,-8]$, which we could find by computing the nullspace of the 1-row matrix $\left(\begin{array}{ccc}7 & -1 & 8\end{array}\right)$.
(d) We don't know anything other than the size, rank, and nullspace / row space of B. So, we just need any 5×3 matrix of rank 2 (two independent columns) with $[7,-1,-8]$ in its nullspace. That is, if its columns are $B=\left(\begin{array}{ccc}c_{1} & c_{2} & c_{3}\end{array}\right)$, then we need $7 c_{1}-c_{2}-8 c_{3}=\overrightarrow{0}$, or equivalently $c_{2}=7 c_{1}-8 c_{3}$. So, we can just pick the first and third columns to be any independent (non-parallel) vectors we want-say, for example, $[1,0,0,0,0]$ and $[0,1,0,0,0]$-and compute the second column by this formula:

$$
B=\left(\begin{array}{ccc}
1 & 7 & 0 \\
0 & -8 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Of course, there are infinitely many other possible choices for B, but they should all share these basic features.

Problem 3 ($5+6+13+6=30$ points):

Consider the matrix $A=B C D$ given by:

$$
A=\underbrace{\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
& 1 & 0 & 3 \\
& & -1 & 0 \\
& & & 1
\end{array}\right)}_{B} \underbrace{\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 2 & 0 & 1 \\
0 & 2 & -1 & 0 \\
1 & 4 & 0 & 1
\end{array}\right)}_{C} \underbrace{\left(\begin{array}{llll}
2 & & & \\
& 1 & & \\
& & -2 & \\
& & & 3
\end{array}\right)}_{D}
$$

(a) Write A^{-1} in terms of B^{-1}, C^{-1}, and D^{-1} (without computing any numbers).
(b) To compute the $\operatorname{sum} x$ of the four columns of A^{-1}, you could solve $A x=b$ for x using what right-hand-side vector b ?
(c) Compute the sum of the columns of A^{-1}.
(d) A basis for the column space $C(A)$ is \qquad

Solutions:

(a) $A^{-1}=D^{-1} C^{-1} B^{-1}$.
(b) The sum of the columns of A^{-1} is $x=A^{-1}\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$, or equivalently the solution to $A x=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$.
(c) We want to compute

$$
x=A^{-1}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=D^{-1} \underbrace{C^{-1} B^{-1}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)}_{d} .
$$

As usual, we want to do this without explicitly multiplying or inverting matrices, since that is a lot more effort than we usually need. In particular, we can break it into the following steps. (You can get a lot of partial credit here just by outlining the steps below: backsubstitution, elimination, diagonal solve.)
(Note that explicitly multiplying $A=B C D$ and then solving $A x=$ $[1,1,1,1]$ by elimination is also possible, but is substantially more work. Multiplying $B C$ is more work than handling B separately via backsubstitution, and multiplying $C D$ is also more work than solving D separately. Think of the arithmetic counts: backsubstitution takes $\sim n^{2}$ operations, while multiplying two matrices is $\sim n^{3}$. Similarly, computing $D^{-1} d$ requires only n divisions for a diagonal D, whereas multiplying C by a diagonal matrix takes n^{2} multiplications. If the matrix is already factored for you into "nice" matrices, you waste a lot of effort if you throw that factorization away by multiplying the factors together!)
(i) Compute $c=B^{-1}\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$. Since B is upper-triangular, we can do this by back-substitution, from bottom to top: $c_{4}=1, c_{3}=-1$, $c_{2}=1-3 c_{4}=-2, c_{1}=1-2 c_{3}=3$, so $c=\left(\begin{array}{c}3 \\ -2 \\ -1 \\ 1\end{array}\right)$.
(ii) Compute $d=C^{-1} c$, i.e. solve $C d=c$. We proceed by elimination,
augmenting C with the right-hand side c :

$$
\begin{aligned}
\left(\begin{array}{cccc}
\left.\begin{array}{ccccc}
1 & 0 & 2 & 0 & 3 \\
0 & 2 & 0 & 1 & -2 \\
0 & 2 & -1 & 0 & -1 \\
1 & 4 & 0 & 1 \\
\underbrace{}_{C} \\
\underbrace{1}_{c}
\end{array}\right) & \rightsquigarrow\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & 3 \\
0 & 2 & 0 & 1 & -2 \\
0 & 2 & -1 & 0 & -1 \\
0 & 4 & -2 & 1 & -2
\end{array}\right) \rightsquigarrow\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & 3 \\
0 & 2 & 0 & 1 & -2 \\
0 & 0 & -1 & -1 & 1 \\
0 & 0 & -2 & -1 & 2
\end{array}\right) \\
& \rightsquigarrow(\underbrace{\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & 3 \\
0 & 2 & 0 & 1 & -2 \\
0 & 0 & -1 & -1 & 1 \\
0 & 0 & & 1
\end{array}\right.}_{U} 0
\end{array}\right)
\end{aligned}
$$

which we then solve by backsubstitution (bottom to top), to get $d_{4}=0, d_{3}=-1, d_{2}=\left(-2-d_{4}\right) / 2=-1, d_{1}=3-2 d_{3}=5$, hence

$$
d=\left(\begin{array}{c}
5 \\
-1 \\
-1 \\
0
\end{array}\right)
$$

(iii) Finally, compute $x=D^{-1} d$. Since D is a diagonal matrix, this is easy: we just divide d by the diagonal elements, yielding

$$
x=\left(\begin{array}{c}
5 / 2 \\
-1 \\
1 / 2 \\
0
\end{array}\right) .
$$

(d) A is invertible, so $C(A)$ is all of \mathbb{R}^{4}. So any 4 linearly independent vectors work, e.g. the columns of B, C, or D, or simply the Cartesian basis (the columns of the 4×4 identity matrix I).

