MIT 18.06 Exam 2, Fall 2022 Johnson

Recitation:

Problem $1[(5+5)+10$ points]:

These two parts are answered independently:
(a) Consider the 2 d "plane" S spanned by

$$
a_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), a_{2}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

(i) Give an orthonormal basis for S.
(ii) Find the closest point in S to the (column vector) $y=[-2,4,-6,8]$.
(b) Suppose that we have 100 measurements $\left(p_{k}, v_{k}\right)$ of the volume v of a gas vs. its pressure p, and we want to fit it to a function of the form $v(p)=\frac{c_{1}}{p}+c_{2}$ for unknown constants c_{1}, c_{2}. Write down the 2×2 system of equations you would solve to find c_{1}, c_{2} in order to minimize the sum of the squared errors $\sum_{k}\left[v\left(p_{k}\right)-v_{k}\right]^{2}$. You can write your answer (leftand right-hand sides) as products of matrices and/or vectors, as long as you specify what each term is (in terms of the unknowns c_{1}, c_{2} and/or the data p_{1}, \ldots, p_{100} and $\left.v_{1}, \ldots, v_{100}\right)$.
(blank page for your work if you need it)

Problem $2[4+4+4+4+4+4$ points]:

These parts can be answered independently:
(a) The matrix $\frac{a_{1} a_{1}^{T}}{a_{1}^{T} a_{1}}+\frac{a_{2} a_{2}^{T}}{a_{2}^{T} a_{2}}$ is the projection matrix onto the span of $a_{1}, a_{2} \in$ \mathbb{R}^{m} if a_{1} and a_{2} are (circle all true answers): independent, orthogonal, parallel, orthonormal, singular, length-1.
(b) If \hat{x} is the least-square solution minimizing $\|A x-b\|$ over x, then $A \hat{x}-b$ must lie in which fundamental subspace of A ?
(c) A, B are 10×3 matrices, and $b \in \mathbb{R}^{10}$. If we want to find the vector $\hat{y} \in \mathbb{R}^{3}$ for which $A \hat{y}-b \in C(B)^{\perp}$, then \hat{y} satisfies the 3×3 system of equations
\qquad (in terms of A, B, b, \hat{y}).
(d) A, B are matrices with $C(A)=C(B)$, and we have solved $A^{T} A \hat{x}=A^{T} b$ for \hat{x} and $B^{T} B \hat{y}=B^{T} b$ for \hat{y}. Circle statements (if any) that must be true: $\hat{x}=\hat{y}, A \hat{x}=B \hat{y}$, and/or $\hat{x}^{T} b=\hat{y}^{T} b$.
(e) Q is a 5×3 matrix with orthonormal columns. Circle which must be true: $\|Q x\|=\|x\|$ for $x \in \mathbb{R}^{3},\left\|Q^{T} y\right\|=\|y\|$ for $y \in \mathbb{R}^{5}$.
(f) If A is a 3×3 matrix with $\operatorname{det}(A)=3$, then $\operatorname{det}\left[A^{T} A^{-1}\right]+\operatorname{det}(2 A)=$ \qquad .
(blank page for your work if you need it)

Problem 3 [(3+3+3)+5 points]:

These two parts are answered independently:
(a) If A is a 10×3 matrix has an $\operatorname{SVD} U \Sigma V^{T}$ with $\Sigma=\left(\begin{array}{ccc}100 & & \\ & 10 & \\ & & 1\end{array}\right)$, then
(i) U is a \qquad \times \qquad matrix, V is a \qquad \times \qquad matrix, and A has rank
\qquad -
(ii) The projection matrix onto $C(A)$ is \qquad and the projection onto $C\left(A^{T}\right)$ is \qquad (simplest answers in terms of $U, \Sigma, V, I)$.
(iii) A good rank-2 approximation for A is \qquad (in terms of U, V)
(b) If $f(x)=\left(x^{T} y\right)^{2}$ for $x, y \in \mathbb{R}^{n}$, then give a formula for ∇f (in terms of y and/or x).
(blank page for your work if you need it)

