MIT 18.06 Exam 2, Fall 2022 Johnson

Your name: (printed)		
Student ID:		

Recitation:

Problem 1 [(5+5)+10 points]:

These two parts are **answered independently**:

(a) Consider the 2d "plane" S spanned by

$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ a_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

- (i) Give an **orthonormal basis** for S.
- (ii) Find the **closest point** in S to the (column vector) y = [-2, 4, -6, 8].
- (b) Suppose that we have 100 measurements (p_k, v_k) of the volume v of a gas vs. its pressure p, and we want to fit it to a function of the form $v(p) = \frac{c_1}{p} + c_2$ for unknown constants c_1, c_2 . Write down the 2×2 system of equations you would solve to find c_1, c_2 in order to minimize the sum of the squared errors $\sum_k [v(p_k) v_k]^2$. You can write your answer (left-and right-hand sides) as products of matrices and/or vectors, as long as you specify what each term is (in terms of the unknowns c_1, c_2 and/or the data p_1, \ldots, p_{100} and v_1, \ldots, v_{100}).

(blank page for your work if you need it)

Problem 2 [4+4+4+4+4+4 points]:

These parts can be **answered independently**:

- (a) The matrix $\frac{a_1a_1^T}{a_1^Ta_1} + \frac{a_2a_2^T}{a_2^Ta_2}$ is the projection matrix onto the span of $a_1, a_2 \in \mathbb{R}^m$ if a_1 and a_2 are (circle all true answers): independent, orthogonal, parallel, orthonormal, singular, length-1.
- (b) If \hat{x} is the least-square solution minimizing ||Ax b|| over x, then $A\hat{x} b$ must lie in which fundamental subspace of A?
- (c) A, B are 10×3 matrices, and $b \in \mathbb{R}^{10}$. If we want to find the vector $\hat{y} \in \mathbb{R}^3$ for which $A\hat{y} b \in C(B)^{\perp}$, then \hat{y} satisfies the 3×3 system of equations ______ (in terms of A, B, b, \hat{y}).
- (d) A, B are matrices with C(A) = C(B), and we have solved $A^T A \hat{x} = A^T b$ for \hat{x} and $B^T B \hat{y} = B^T b$ for \hat{y} . Circle statements (if any) that *must* be true: $\hat{x} = \hat{y}, A \hat{x} = B \hat{y}$, and/or $\hat{x}^T b = \hat{y}^T b$.
- (e) Q is a 5 × 3 matrix with orthonormal columns. Circle which **must** be true: ||Qx|| = ||x|| for $x \in \mathbb{R}^3$, $||Q^Ty|| = ||y||$ for $y \in \mathbb{R}^5$.
- (f) If A is a 3×3 matrix with det(A) = 3, then det $[A^T A^{-1}] + det(2A) =$ _____.

(blank page for your work if you need it)

Problem 3 [(3+3+3)+5 points]:

These two parts are **answered independently**:

(a) If A is a 10 × 3 matrix has an SVD $U\Sigma V^T$ with $\Sigma = \begin{pmatrix} 100 & \\ & 10 & \\ & & 1 \end{pmatrix}$, then

- (i) U is a _____ × ____ matrix, V is a _____ × ____ matrix, and A has rank .
- (ii) The projection matrix onto C(A) is _____ and the projection onto $C(A^T)$ is _____ (simplest answers in terms of U, Σ, V, I).
- (iii) A good rank-2 approximation for A is _____ (in terms of U, V)
- (b) If $f(x) = (x^T y)^2$ for $x, y \in \mathbb{R}^n$, then give a formula for ∇f (in terms of y and/or x).

(blank page for your work if you need it)