MIT 18.06 Exam 2 Solutions, Fall 2022
 Johnson

Problem $1[(5+5)+10$ points]:

These two parts are answered independently:
(a) Consider the 2d "plane" S spanned by

$$
a_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), a_{2}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

(i) Give an orthonormal basis for S.

Solution: We just need to do Gram-Schmidt:

$$
q_{1}=\frac{a_{1}}{\left\|a_{1}\right\|^{2}} \overline{\frac{1}{2}} \frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

and

$$
q_{2}=\frac{a_{2}-q_{1} g_{1}^{T} a_{2}}{\|\cdots\|}=\frac{\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)}{\|\cdot\|^{1}}=\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right) .
$$

(Although this is the most obvious approach, there are infinitely many other orthonormal bases we chould have chosen. For example, we could have done Gram-Schmidt in the opposite order, on a_{2}, a_{1}.)
(ii) Find the closest point in S to the (column vector) $y=[-2,4,-6,8]$.

Solution: This is just the orthogonal projection p of y onto S, which is easy to do using the orthonormal basis from (a):

$$
\left.p=q_{1} g_{1}^{T} y+q_{2} q_{2}^{T} y=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)+2\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)=\begin{array}{|c}
3 \\
-1 \\
-1 \\
3
\end{array}\right) .
$$

Note that we could also have computed the projection matrix $P=Q Q^{T}=q_{1} q_{1}^{T}+$ $q_{2} q_{2}^{T}$ and then multiplied it by y, but this is much more work (matrices require more arithmetic than vectors)! Even more work would be using $A=\left(\begin{array}{ll}a_{1} & a_{2}\end{array}\right)$ and then using $A\left(A^{T} A\right)^{-1} A^{T}$, i..e. solving the normal equations $A^{T} A \hat{x}=A^{T} y$ and then finding $p=A \hat{x}$.
(b) Suppose that we have 100 measurements $\left(p_{k}, v_{k}\right)$ of the volume v of a gas vs. its pressure p, and we want to fit it to a function of the form $v(p)=\frac{c_{1}}{p}+c_{2}$ for unknown constants c_{1}, c_{2}. Write down the 2×2 system of equations you would solve to find c_{1}, c_{2} in order to minimize the sum of the squared errors $\sum_{k}\left[v\left(p_{k}\right)-v_{k}\right]^{2}$. You can write your answer (leftand right-hand sides) as products of matrices and/or vectors, as long as you specify what each term is (in terms of the unknowns c_{1}, c_{2} and/or the data p_{1}, \ldots, p_{100} and v_{1}, \ldots, v_{100}).

Solution: This is a least-square problem, so the answer is to solve the normal equations $A^{T} A c=A^{T} b$ for $c=\left(\begin{array}{ll}c_{1} & c_{2}\end{array}\right)^{T}$ where

$$
A=\left(\begin{array}{cc}
\frac{1}{p_{1}} & 1 \\
\frac{1}{p_{2}} & 1 \\
\vdots & \vdots \\
\frac{1}{p_{100}} & 1
\end{array}\right) \text { and } b=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{100}
\end{array}\right)
$$

so that $A c$ is the "model" $\left(\begin{array}{c}v\left(p_{1}\right) \\ v\left(p_{2}\right) \\ \vdots \\ v\left(p_{100}\right)\end{array}\right)$ and b are the data we are fitting to, so that $\sum_{k}\left[v\left(p_{k}\right)-\right.$ $\left.v_{k}\right]^{2}=\|A c-b\|^{2}$.

Problem $2[4+4+4+4+4+4$ points]:

These parts can be answered independently:
(a) The matrix $\frac{a_{1} a_{1}^{T}}{a_{1}^{T} a_{1}}+\frac{a_{2} a_{2}^{T}}{a_{2}^{T} a_{2}}$ is the projection matrix onto the span of $a_{1}, a_{2} \in \mathbb{R}^{m}$ if a_{1} and a_{2} are (circle all true answers): independent, orthogonal, parallel, orthonormal, singular, length-1.

Solution: orthogonal or orthonormal. (They must be orthogonal for this to be a pro-jection-that's the only way you can project one vector at a time via dot products. Their normalization is irrelevant because we are dividing each term by the length ${ }^{2}$, but it's fine if they are normalized to length 1.)

Ideally, this problem should have specified explicitly that the vectors a_{1}, a_{2} are nonzero (zero vectors are orthogonal to everything, including themselves), but this is implicit in the problem statement since the formula $\frac{a_{1} a_{1}^{T}}{a_{1}^{T} a_{1}}+\frac{a_{2} a_{2}^{T}}{a_{2}^{T} a_{2}}$ makes no sense for zero vectors ($\frac{0}{0}$?).
(b) If \hat{x} is the least-square solution minimizing $\|A x-b\|$ over x, then $A \hat{x}-b$ must lie in which fundamental subspace of A ?

Solution: $C(A)^{\perp}=N\left(A^{T}\right)$, i.e. the left nullspace of A. $A \hat{x}$ is the projection onto $C(A)$, and the error $b-A \hat{x}$ is orthogonal to $C(A)$.
(c) A, B are 10×3 matrices, and $b \in \mathbb{R}^{10}$. If we want to find the vector $\hat{y} \in \mathbb{R}^{3}$ for which $A \hat{y}-b \in C(B)^{\perp}$, then \hat{y} satisfies the 3×3 system of equations ___ (in terms of $A, B, b, \hat{y})$.

Solution: $C(B)^{\perp}=N\left(B^{T}\right)$, so we just need $B^{T}(A \hat{y}-b)=0 \Longrightarrow B^{T} A \hat{y}=B^{T} b$.
Note that this is very similar to how we derived the normal equations, by requiring that $A \hat{x}-b$ be orthogonal to $C(A)$; that is, you get the normal equations if you set $B=A$.
(d) A, B are matrices with $C(A)=C(B)$, and we have solved $A^{T} A \hat{x}=A^{T} b$ for \hat{x} and $B^{T} B \hat{y}=$ $B^{T} b$ for \hat{y}. Circle statements (if any) that must be true: $\hat{x}=\hat{y}, A \hat{x}=B \hat{y}$, and/or $\hat{x}^{T} b=\hat{y}^{T} b$.

Solution: $A \hat{x}=B \hat{y}$, since these are the orthogonal projections onto $C(A)=C(B)$; the column spaces are the same, so the projections are the same. (But the coefficients of the projection \hat{x} in the A basis don't need to match the coefficients \hat{y} in the B basis!)
(e) Q is a 5×3 matrix with orthonormal columns. Circle which must be true: $\|Q x\|=\|x\|$ for $x \in \mathbb{R}^{3},\left\|Q^{T} y\right\|=\|y\|$ for $y \in \mathbb{R}^{5}$.

Solution: $\|Q x\|=\|x\|$, since $\|Q x\|=\sqrt{(Q x)^{T}(Q x)}=\sqrt{x^{T} Q^{T} Q^{I}}=\|x\|$. In contrast, $\left\|Q^{T} y\right\|=\sqrt{\left(Q^{T} y\right)^{T}\left(Q^{T} y\right)}=\sqrt{y^{T} Q Q^{T} y}$, but $Q Q^{T} \neq I$ since Q is not square -it is a 5×5 projection matrix onto the 3-dimensional subspace $C(Q)$.
(f) If A is a 3×3 matrix with $\operatorname{det}(A)=3$, then $\operatorname{det}\left[A^{T} A^{-1}\right]+\operatorname{det}(2 A)=$ \qquad .

Solution: Using the properties of determinants, we find:

$$
\operatorname{det}\left[A^{T} A^{-1}\right]+\operatorname{det}(2 A)=\underbrace{\operatorname{det}\left(A^{T}\right)}_{\operatorname{det} A=3} \underbrace{\operatorname{det}\left(A^{-1}\right)}_{(\operatorname{det} A)^{-1}=\frac{1}{3}}+\underbrace{\operatorname{det}(2 A)}_{2^{3} \operatorname{det}(A)=24}=25 .
$$

Problem 3 [$(3+3+3)+5$ points]:

These two parts are answered independently:
(a) If A is a 10×3 matrix has an $\operatorname{SVD} U \Sigma V^{T}$ with $\Sigma=\left(\begin{array}{ccc}100 & & \\ & 10 & \\ & & 1\end{array}\right)$, then
(i) U is a \qquad \times \qquad matrix, V is a \qquad \times \qquad matrix, and A has rank \qquad -.

Solution: U is a 10×3 matrix, V is a 3×3 matrix (this is the standard size of the "thin" SVD we covered in class, but these are also the only possible sizes that will give the correct 10×3 size for $A!$), and the rank is 3 (the number of nonzero singular values $\sigma_{1}=100, \sigma_{2}=10, \sigma_{3}=1$.
(ii) The projection matrix onto $C(A)$ is \qquad and the projection onto $C\left(A^{T}\right)$ is \qquad (simplest answers in terms of $U, \Sigma, V, I)$.

Solution: U is an orthonormal basis for $C(A)$, so the projection is $U U^{T} . V$ is an orthonormal basis for $C\left(A^{T}\right)$, so the projection is $V V^{T}$, but to get full credit you should notice that V is square and hence unitary, so $V V^{T}=I$. (Alternatively, since A is 10×3 with full column rank, the row space is all of \mathbb{R}^{3}, so the projection must be I.)

Note that we could also compute the projection onto $C(A)$ by the formula $A\left(A^{T} A\right)^{-1} A^{T}$ if we substitute $A=U \Sigma V^{T}$ and use the fact that V is square and hence $V^{T}=V^{-1}$: $U \Sigma V^{T}\left(V \Sigma^{T} U^{T} U \Sigma V^{T}\right)^{-1} V \Sigma^{T} U^{T}=U \Sigma V^{T}\left(V^{T}\right)^{-1} \Sigma^{-2}(V)^{-1} V \Sigma U^{T}=U U^{T}$; not only is this a lot more work, but it also doesn't exploit the fact that we know that U is an orthonormal basis for $C(A)$. Similarly, we could imagine using $A^{T}\left(A A^{T}\right)^{-1} A$ to project onto $C\left(A^{T}\right)$ and simplify, but this is even tricker to get the algebra right-in fact, you can't use that formula directly because $A A^{T}=U \Sigma^{2} U^{T}$ is not even invertible (it is a 10×10 matrix of rank $3!$)-we would instead have to start with the normal equations $A A^{T} y=A b$ (which are solvable) and then find the projection $P b=A^{T} y$, which (after a fair amount of work) can indeed be simplified to $P b=V V^{T} b$.
(iii) A good rank-2 approximation for A is \qquad (in terms of U, V)

Solution: We get a good rank-2 approximation (in some sense the "best" rank-2 approximation) by setting the third singular value to zero, i.e.

$$
U\left(\begin{array}{ccc}
100 & & \\
& 10 & \\
& & \mathbf{0}
\end{array}\right) V^{T}=100 u_{1} v_{1}^{T}+10 u_{2} v_{2}^{T}
$$

where u_{1}, u_{2} are the first two columns of U and v_{1}, v_{2} are the first two columns of V.
(b) If $f(x)=\left(x^{T} y\right)^{2}$ for $x, y \in \mathbb{R}^{n}$, then give a formula for ∇f (in terms of y and/or x).

Solution: Using the product rule,

$$
d f=d\left(x^{T} y\right)\left(x^{T} y\right)+\left(x^{T} y\right) d\left(x^{T} y\right)=2\left(x^{T} y\right)\left(d x^{T} y\right)=\underbrace{2\left(x^{T} y\right) y^{T}}_{(\nabla f)^{T}} d x
$$

so $\nabla f=2\left(x^{T} y\right) y$. Alternatively, we could have used the power rule $d f=2\left(x^{T} y\right) d\left(x^{T} y\right)$.
Note that the parentheses are important here. If we write it without parentheses, we might be tempted to write $2 x^{T} y y=2 x^{T} y^{2}$, but this is nonsense-you can't multiply $y y=y^{2}$ because y is a column vector. To get an expression that is associative (i.e., which works regardless of
where/whether we put parentheses), we would have to write the gradient as something like $\nabla f=2 y x^{T} y$ or $\nabla f=2 y y^{T} x$, using the fact that $x^{T} y=y^{T} x$ is a scalar that we can move around freely.

