MIT 18.06 Exam 3, Fall 2022
 Johnson

Recitation:

Problem $1[10+(4+4)+5+10$ points]:

Two of the eigenvectors of the real matrix A are $x_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $x_{2}=$ $\left(\begin{array}{c}0 \\ i \\ 1\end{array}\right)$ with corresponding eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2+i$.
(a) Another eigenvalue of A is $\lambda_{3}=$ \qquad , and A is a \qquad \times matrix equal to $A=$ \qquad . You can leave your answer for A as a product of matrices and/or matrix inverses without simplifying.
(b) $\operatorname{det} A=$ \qquad and trace $A=$ \qquad .
(c) $\operatorname{det}(A-\lambda I)=$ \qquad (simplify to a polynomial in λ). (Time-saving hint: You can do this without calculating A explicitly!)
(d) Give all of the eigenvalues, and corresponding eigenvectors, of $\left(A^{2}-\right.$ $2 I) e^{\left(A^{-1}\right)}$. You can leave your eigenvalues as non-simplified arithmetic expressions.
(blank page for your work if you need it)

Problem $2[11+11+11$ points]:

Consider the differential equation

$$
\frac{d x}{d t}=-B^{T} B x, \quad B=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 0 & 2 \\
3 & 1 & 3 \\
4 & 0 & 4 \\
5 & 1 & 5
\end{array}\right)
$$

(a) $x(t)=$ (constant vector) is a possible solution of this ODE for what vector (s) x ? (Describe all possible answers. Look carefully at $B!$)
(b) Which of the following looks like a possible plot of $\|x(t)\|$ versus t for some initial $x(0)$? Circle all possibilities. (Note: all vertical axes are identical.)

You know this because the eigenvalues of \qquad must be \qquad .

(c) For $x(0)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, give a good approximation for $x(1000) \approx$ \qquad .
(Give a specific numerical vector, no unknowns.)
(blank page for your work if you need it)

Problem 3 [10 $+8+8+8$ points]:

Suppose that the sequence of vectors $y_{0}, y_{1}, y_{2}, \ldots \in \mathbb{R}^{m}$ satisfies the recurrence

$$
\frac{y_{n}-y_{n-1}}{h}=A\left(\frac{y_{n-1}+y_{n}}{2}\right)
$$

for some real $h>0$ and some $m \times m$ matrix A.
(a) Write $y_{n}=\left(__{\square}\right) y_{n-1}=\left(__{\quad}\right) y_{0}$, where you fill in the blanks with some matrices written in terms of A, I (the $m \times m$ identity), h, and n.
(b) If $y_{0}=x_{k}$ where x_{k} is an eigenvector of A with eigenvalue λ_{k}, give a much simpler formula $y_{n}=$ \qquad in terms of x_{k}, λ_{k}, h, n.
(c) The solutions y_{n} must be decaying to zero as $n \rightarrow \infty$ if A is (circle all that apply): real, Hermitian, positive-definite, positive-semidefinite, negative-definite, negative-semidefinite. Justify your answer (briefly!).
(d) If $A=i B$ where B is Hermitian and invertible, then the solutions y_{n} for $y_{0} \neq 0$ must be (circle one): growing, decaying to zero, approaching a nonzero constant, oscillating. Justify your answer (briefly!).
(blank page for your work if you need it)

