MIT 18.06 Final Exam, Fall 2022
 Johnson

Recitation:

Problem 1 [$5+10$ points]:

$A x=b$ has solutions $x_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $x_{2}=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$, and possibly other solutions, for some (real) matrix A and right-hand side b.
(a) A is an $m \times n$ matrix with rank r. Give as much true information as possible about m, n, r. (For example, " $m=16, r=0, n \leq 12$ " is a possible, but incorrect, answer.)
(b) Give another solution $x_{3}=$ \qquad (different from x_{1} and x_{2}) for the same equation $A x=b$. You can do this because you know a nonzero vector \qquad in the \qquad space of A.
(blank page for your work if you need it)

Problem 2 [10 +5 points]:

Robert "Bobby Boy" Boyle (way back in 1662) measured a sequence of m data points $\left(p_{1}, v_{1}\right),\left(p_{2}, v_{2}\right), \ldots,\left(p_{m}, v_{m}\right)$ relating the pressure p of a gas to its volume v. Suppose that he wanted to fit his data to a model of the form

$$
V(P)=\alpha+\frac{\beta}{P}
$$

and solve for the unknown coefficients α and β that minimize the sum-of-squares error $\sum_{k}\left[v_{k}-V\left(p_{k}\right)\right]^{2}$ between the model and the measured data.
(a) Write down a \qquad \times \qquad system of linear equations (matrix?)(unknowns?) = (right-hand side?) that Bobby could solve to find these best-fit coefficients α and β. You can leave the matrix and right-hand-side as products of terms involving other matrices and/or vectors, but clearly describe how each term is constructed from the data $\left(p_{1}, v_{1}\right),\left(p_{2}, v_{2}\right), \ldots,\left(p_{m}, v_{m}\right)$.
(b) Using these best-fit α and β values, the vector $\delta=\left(\begin{array}{c}v_{1}-V\left(p_{1}\right) \\ v_{2}-V\left(p_{2}\right) \\ \vdots \\ v_{m}-V\left(p_{m}\right)\end{array}\right)$ of discrepancies between the model and the data is an orthogonal projection of the vector \qquad onto the \qquad space of the matrix \qquad .
(blank page for your work if you need it)

Problem 3 [5 +10 points]:

Consider the system of differential equations

$$
\frac{d x}{d t}=\left(\begin{array}{cc}
-1 & 2 \\
& a
\end{array}\right) x
$$

with initial condition $x(0)=\binom{3}{1}$.
(a) For what value(s) of a will the solution $x(t)$ approach a nonzero constant vector at large t ?
(b) Using the value of a from the previous part, write down the exact solution $x(t)$ (at all times, not just for large t).
(blank page for your work if you need it)

Problem $4[4+4+4+4+4$ points]:

The following short-answer questions are answered independently (and refer to unrelated matrices A for each part), requiring little or no computation:
(a) Any solution x of $A x=b$ is a sum of a vector in the \qquad space of A and a vector in the in the \qquad space of A.
(b) If $A x=b$ is solvable for $a n y b$, then it might be a (circle one) 10×3 or 3×10 matrix with rank $r=$ \qquad . If $A x=b$ has a unique solution x for some b then it might be a (circle one) 10×3 or 3×10 matrix with rank $r=$ \qquad -.
(c) Relate the four fundamental subspaces of $A^{T} A$ to the four fundamental subspaces of a real matrix A : nullspace of $A^{T} A=$ \qquad space of A, left nullspace of $A^{T} A=$ \qquad space of A, column space of $A^{T} A=$
\qquad space of A, row space of $A^{T} A=$ \qquad space of A.
(d) Suppose we solve $A^{T} A \hat{x}=A^{T} b$ for \hat{x} given some real A. Then, the orthogonal projection of b into $C(A)$ is the vector \qquad and the projection of b onto $N\left(A^{T}\right)$ is the vector \qquad . (Give formulas in terms of A, b, \hat{x} involving no matrix inverses.)
(e) Which of the following matrices cannot be singular for any real square matrix A (circle all answers): $A^{T} A, A^{2}+I,\left(A+A^{T}\right)^{2}+I, e^{-A}, A+10^{100} I$, $3 A^{T} A+4 I$.
(blank page for your work if you need it)

Problem $5[10+5+5$ points]:

Suppose you have a matrix $A=C^{-1} B$ where

$$
B=\left(\begin{array}{ccc}
1 & & \\
-1 & 2 & \\
2 & 1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ccc}
2 & & 4 \\
& 2 & 2 \\
4 & 2 & 2
\end{array}\right)
$$

The following parts can be answered independently.
(a) Compute the first column of A^{-1}.
(b) Compute the trace of the matrix $A^{-1} B$. (Little calculation is required because $A^{-1} B$ has the same trace, and the same eigenvalues, as \qquad , since the two matrices are \qquad !)
(c) One of the eigenvalues of C is $\lambda_{1}=2$. A corresponding eigenvector is $x_{1}=$ \qquad
(blank page for your work if you need it)

Problem $6[4+4+4+4+4$ points]:

The matrix A has eigenvalues $\lambda_{1}=1, \lambda_{2}=-2$, and $\lambda_{3}=0$, with corresponding eigenvectors $x_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), x_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), x_{3}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$. Consider the recurrence

$$
A y_{n+1}=y_{n}-3 y_{n+1}
$$

starting with some initial vector y_{0}.
(a) Give an exact formula for $y_{n}=$ \qquad in terms of A, I, y_{0}, n. (For example, $y_{n}=\left(e^{n A}+7 I\right) y_{0}$ is a possible but incorrect answer.)
(b) For a typical initial vector y_{0} (e.g. one chosen at random with randn(3) in Julia), you should expect y_{n} for large n to be approximately parallel to the vector \qquad and growing/decaying/oscillating/nearly constant with n (circle one).
(c) Give an example of an initial vector $y_{0}=$ \qquad for which y_{n} is decaying towards zero with n, and for this y_{0} give an exact numeric formula (in terms of n) for $y_{n}=$ \qquad . (There are many possible answers, but not much calculation should be needed.) Your answer should have no matrices or unknowns, only vectors of numbers or simple arithmetic expressions like 2^{n} or e^{n} or $\frac{1}{n^{2}}$.
(d) The matrix A can/must/cannot be Hermitian (circle one). Briefly justify your answer.
(e) For $y_{0}=\left(\begin{array}{c}0 \\ -4 \\ 1\end{array}\right)$, give a good approximate formula for $y_{100}=$ \qquad (numeric vector, no unknowns or matrices).
(blank page for your work if you need it)

Problem 7 [$5+8+5$ points]:

The real Hermitian (real-symmetric) matrix A has an eigenvalue $\lambda_{1}=-\frac{1}{2}$ (clarification: with multiplicity 1, not a repeated root) and a corresponding eigenvector $x_{1}=\left(\begin{array}{c}1 \\ 2 \\ -1 \\ 0 \\ 1\end{array}\right)$, and its other eigenvalues are all equal to 1.
(a) Give one example of an eigenvector of A for $\lambda_{2}=1$.
(b) The orthogonal projection of $b=\left(\begin{array}{l}3 \\ 1 \\ 0 \\ 1 \\ 2\end{array}\right)$ onto the $\operatorname{span} S$ of x_{1} is and the projection of b onto the orthogonal complement S^{\perp} is \qquad .
(c) With the help of the previous part, an exact formula for $A^{n}\left(\begin{array}{l}3 \\ 1 \\ 0 \\ 1 \\ 2\end{array}\right)=$ unknowns).
(blank page for your work if you need it)

Problem 8 [5 $+8+5$ points]:

Suppose that Q is a 4×3 real matrix with orthonormal columns q_{1}, q_{2}, q_{3}.
(a) Starting from a real vector v (not in the column space of Q), give a formula for the fourth orthonormal vector q_{4} that would be produced by Gram-Schmidt on q_{1}, q_{2}, q_{3}, v.
(b) Describe $N(Q), N\left(Q^{T}\right), N\left(Q^{T} Q\right)$, and $N\left(Q Q^{T}\right)$: give the dimension and a basis for each (in terms of $q_{1}, q_{2}, q_{3}, q_{4}$ as needed).
(c) Suppose $b=q_{1}+2 q_{2}+3 q_{3}+4 q_{4}$. Give the least-squares solution $\hat{x}=$
\qquad minimizing $\|b-Q x\|$.
(blank page for your work if you need it)

