MIT 18.06 Final Exam Solutions, Fall 2022, Johnson

Problem 1 [$5+10$ points]:

$A x=b$ has solutions $x_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $x_{2}=\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$, and possibly other solutions, for some (real) matrix A and right-hand side b.
(a) A is an $m \times n$ matrix with rank r. Give as much true information as possible about m, n, r. (For example, " $m=16, r=0, n \leq 12$ " is a possible, but incorrect, answer.)
(b) Give another solution $x_{3}=$ \qquad (different from x_{1} and x_{2}) for the same equation $A x=b$. You can do this because you know a nonzero vector \qquad in the \qquad space of A.

Solution:

(a) We must have $n=3$ because the solutions have 3 components. Since the solutions are not unique, A cannot have full column rank and so $0 \leq r \leq 2$. We must have $m \geq r$ rows (which is true for any matrix).
(b) The difference $x_{2}-x_{1}=\left(\begin{array}{l}3 \\ 3 \\ 3\end{array}\right)$ between two solutions (or any multiple thereof) must be a vector in the null space of A. So, we can find more solutions simply by adding any multiple of this to x_{1} or x_{2}, for example $x_{2}+\left(x_{2}-x_{1}\right)=\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)$ is a solution, or in fact any vector of the form $x_{1}+\frac{\alpha}{3}\left(x_{2}-x_{1}\right)=\left(\begin{array}{l}\alpha+1 \\ \alpha+2 \\ \alpha+3\end{array}\right)$ for any scalar α (this is the "complete" solution to $A x=b$, though you weren't required to write this explicitly).

Problem 2 [10 +5 points]:

Robert "Bobby Boy" Boyle (way back in 1662) measured a sequence of m data points $\left(p_{1}, v_{1}\right),\left(p_{2}, v_{2}\right), \ldots,\left(p_{m}, v_{m}\right)$ relating the pressure p of a gas to its volume v. Suppose that he wanted to fit his data to a model of the form

$$
V(P)=\alpha+\frac{\beta}{P}
$$

and solve for the unknown coefficients α and β that minimize the sum-of-squares error $\sum_{k}\left[v_{k}-V\left(p_{k}\right)\right]^{2}$ between the model and the measured data.
(a) Write down a \qquad \times \qquad system of linear equations (matrix?)(unknowns?) = (right-hand side?) that Bobby could solve to find these best-fit coefficients α and β. You can leave the matrix and right-hand-side as products of terms involving other matrices and/or vectors, but clearly describe how each term is constructed from the data $\left(p_{1}, v_{1}\right),\left(p_{2}, v_{2}\right), \ldots,\left(p_{m}, v_{m}\right)$.
(b) Using these best-fit α and β values, the vector $\delta=\left(\begin{array}{c}v_{1}-V\left(p_{1}\right) \\ v_{2}-V\left(p_{2}\right) \\ \vdots \\ v_{m}-V\left(p_{m}\right)\end{array}\right)$ of discrepancies between the model and the data is an orthogonal projection of the vector \qquad onto the \qquad space of the matrix \qquad .

Solution:

(a) There are 2 unknowns, so we will have a 2×2 system of equations given by the normal equations for our least-square problem:

$$
A^{T} A \underbrace{\binom{\alpha}{\beta}}_{\hat{x}}=A^{T} b
$$

where

$$
A=\underbrace{\left(\begin{array}{cc}
1 & \frac{1}{p_{1}} \\
1 & \frac{1}{p_{2}} \\
\vdots & \vdots \\
1 & \frac{1}{p_{m}}
\end{array}\right)}_{m \times 2}, \quad b=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right)
$$

since we want to minimize $\sum_{k}\left[v_{k}-V\left(p_{k}\right)\right]^{2}=\|b-A x\|^{2}$.
(b) The vector δ is precisely the error ("residual") $\delta=b-A \hat{x}$. Recall that the least-square solution \hat{x} is chosen so that $p=A \hat{x}=P b$ is the projection of b onto $C(A)$, and $\delta=b-A \hat{x}=b-p=(I-P) b$ is the projection of b
onto $N\left(A^{T}\right)$, the left nullspace of A.
(If you've forgotten this, it's always useful to draw a sketch of least-square fitting to remind yourself that the $b-A x$ is minimized when $A x$ is the orthogonal projection of b onto $C(A)$.)

Problem 3 [$5+10$ points]:

Consider the system of differential equations

$$
\frac{d x}{d t}=\left(\begin{array}{cc}
-1 & 2 \\
& a
\end{array}\right) x
$$

with initial condition $x(0)=\binom{3}{1}$.
(a) For what value(s) of a will the solution $x(t)$ approach a nonzero constant vector at large t ?
(b) Using the value of a from the previous part, write down the exact solution $x(t)$ (at all times, not just for large t).

Solution:

(a) To make the ODE solution $x(t)=e^{A t}$ go to a nonzero constant, we want one $e^{\lambda t}$ term to be constant (i.e. $\lambda=0$) and the other $e^{\lambda t}$ term to be decaying (i.e. $\operatorname{Re}(\lambda)<0$). Since $A=\left(\begin{array}{cc}-1 & 2 \\ & a\end{array}\right)$ is an upper-triangular, $\operatorname{det}(A-\lambda I)$ is just the product of the diagonals $(-1-\lambda)(a-\lambda)$ and the eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=a$. The first eigenvalue gives decaying solutions, so we need $a=0$ to get a constant solution from the other term.

Technically, we also need to check that $x(0)$ has a nonzero coefficient of the $\lambda_{2}=0$ eigenvector, but we will verify this in part (b).
(b) To obtain $x(t)$, we need to (1) expand $x(0)$ in the basis of eigenvectors and (2) multiply each term by $e^{\lambda t}$. That is, we are looking for the solution:

$$
x(t)=e^{A t} x(0)=\underbrace{\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)}_{X} \underbrace{\binom{e^{-t}}{e^{0 t}}}_{e^{\Lambda t}} \underbrace{X^{-1} x(0)}_{c}=c_{1} e^{-t} x_{1}+c_{2} x_{2}
$$

which corresponds to expanding a solution in the basis of the eigenvectors x_{1}, x_{2}, finding the coefficients c from $x(0)$, and multiplying each term by the corresponding $e^{\lambda t}$.

First, we need to find the eigenvectors, but this a straightforward exercise in computing nullspaces (which in this simple case can be done by inspection):

$$
\left(A-\not X_{1} I\right) x_{1}^{-1}=\left(\begin{array}{ll}
0 & 2 \\
& 1
\end{array}\right) x_{1}=\overrightarrow{0} \Longrightarrow x_{1}=\binom{1}{0}
$$

$$
\left(A-\not \chi_{2} I\right) x_{2}=\left(\begin{array}{cc}
-1 & 2 \\
& 0
\end{array}\right) x_{2}=\overrightarrow{0} \Longrightarrow x_{2}=\binom{2}{1}
$$

Now, to expand $x(0)$ this basis, we write
$x(0)=\binom{3}{1}=c_{1} \underbrace{\binom{1}{0}}_{x_{1}}+c_{2} \underbrace{\binom{2}{1}}_{x_{2}}=\underbrace{\left(\begin{array}{ll}1 & 2 \\ & 1\end{array}\right)}_{X} \underbrace{\binom{c_{1}}{c_{2}}}_{c} \Longrightarrow c=\binom{1}{1}$,
which is solvable by inspection, or by using the fact that X is uppertriangular so we can do backsubstitution (with no elimination steps). (If we wrote the eigenvalues in the opposite order we would have gotten a lower-triangular X, from which we could do forward-substitution.) Hence

$$
x(t)=c_{1} e^{\lambda_{1} t} x_{1}+c_{2} e^{\lambda_{2} t} x_{2}=e^{-t}\binom{1}{0}+e^{0 t}\binom{2}{1}=\binom{2+e^{-t}}{1}
$$

which clearly approaches the nonzero constant vector x_{2} as desired in part (a), since $c_{2} \neq 0$.

Problem $4[4+4+4+4+4$ points]:

The following short-answer questions are answered independently (and refer to unrelated matrices A for each part), requiring little or no computation:
(a) Any solution x of $A x=b$ is a sum of a vector in the \qquad space of A and a vector in the in the \qquad space of A.
(b) If $A x=b$ is solvable for $a n y b$, then it might be a (circle one) 10×3 or 3×10 matrix with rank $r=$ \qquad . If $A x=b$ has a unique solution x for some b then it might be a (circle one) 10×3 or 3×10 matrix with rank $r=$ \qquad -.
(c) Relate the four fundamental subspaces of $A^{T} A$ to the four fundamental subspaces of a real matrix A : nullspace of $A^{T} A=$ \qquad space of A, left nullspace of $A^{T} A=$ \qquad space of A, column space of $A^{T} A=$
\qquad space of A, row space of $A^{T} A=$ \qquad space of A.
(d) Suppose we solve $A^{T} A \hat{x}=A^{T} b$ for \hat{x} given some real A. Then, the orthogonal projection of b into $C(A)$ is the vector \qquad and the projection of b onto $N\left(A^{T}\right)$ is the vector \qquad . (Give formulas in terms of A, b, \hat{x} involving no matrix inverses.)
(e) Which of the following matrices cannot be singular for any real square matrix A (circle all answers): $A^{T} A, A^{2}+I,\left(A+A^{T}\right)^{2}+I, e^{-A}, A+10^{100} I$, $3 A^{T} A+4 I$.

Solution:

(a) The row space $C\left(A^{H}\right)$ and the null space $N(A)$, since together these give the whole space \mathbb{R}^{n} of possible inputs of any $m \times n$ matrix A.
(b) If it's solvable for any b, then A must be a "wide" matrix with full row rank, for example a 3×10 matrix with rank $r=3$. If the solutions are unique, then A must be a "tall" matrix with full column rank, for example a 10×3 matrix with $\operatorname{rank} \quad r=3$.
(c) We showed in class that the nullspace of $A^{T} A$ matches that of A and the column space matches that of A^{T}. Furthermore, since $A^{T} A$ is realsymmetric, i.e. $\left(A^{T} A\right)^{T}=A^{T} A$, the same things hold true of the left nullspace and the row space. So the nullspace is $N\left(A^{T} A\right)=N(A)$, the left nullspace is $N\left(\left(A^{T} A\right)^{T}\right)=N(A)$, the column space is $C\left(A^{T} A\right)=C\left(A^{T}\right)$, and the row space is $C\left(\left(A^{T} A\right)^{T}\right)=C\left(A^{T}\right)$.
(d) The orthogonal projection of b onto $C(A)$ is $A \hat{x}$ and the projection of b onto $N\left(A^{T}\right)$ is $b-A \hat{x}$. This is how we derived the normal equations $A^{T} A \hat{x}=A^{T} b$ in the first place!
(e) $A^{T} A$ can be singular since it is only semidefinite (e.g. suppose $A=0$). $A^{2}+I$ can be singular if A has an eigenvalue of $\pm i$ (possible for real $A!$). $\left(A+A^{T}\right)^{2}+I$ cannot be singular since $A+A^{T}$ is real-symmetric with real eigenvalues, so the eigenvalues of $\left(A+A^{T}\right)^{2}+I$ are $(\text { real })^{2}+1>0$. e^{-A} cannot be singular since $e^{-\lambda} \neq 0$ for any eigenvalue λ of $A . A+$ $10^{100} I$ can be singular if A has an eigenvalue $\lambda=-\left(10^{100}\right) .3 A^{T} A+4 I$ cannot be singular since $A^{T} A$ is semidefinite with eigenvalues ≥ 0, so $3 A^{T} A+4 I$ has eigenvalues of the form 3 (something $\left.\geq 0\right)+4>0$.

Problem 5 [10 $+5+5$ points]:

Suppose you have a matrix $A=C^{-1} B$ where

$$
B=\left(\begin{array}{ccc}
1 & & \\
-1 & 2 & \\
2 & 1 & 1
\end{array}\right), \quad C=\left(\begin{array}{ccc}
2 & & 4 \\
& 2 & 2 \\
4 & 2 & 2
\end{array}\right)
$$

The following parts can be answered independently.
(a) Compute the first column of A^{-1}.
(b) Compute the trace of the matrix $A^{-1} B$. (Little calculation is required because $A^{-1} B$ has the same trace, and the same eigenvalues, as \qquad _, since the two matrices are \qquad !)
(c) One of the eigenvalues of C is $\lambda_{1}=2$. A corresponding eigenvector is $x_{1}=$ \qquad -.

Solution:

(a) We can do this without computing A^{-1} explicitly (which is almost always a mistake). We just need to compute

$$
x=A^{-1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(C^{-1} B\right)^{-1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\underbrace{B^{-1} \underbrace{C\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}_{b}}_{\text {triangular solve } B x=b} .
$$

The first step is $b=C\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}2 \\ 0 \\ 4\end{array}\right)$, just the first column of c. The second step is to compute $x=B^{-1} b$ by solving $B x=b$ for x, but since B is lower-triangular we can do this easily by forward-substitution:

$$
\underbrace{\left(\begin{array}{ccc}
1 & & \\
-1 & 2 & \\
2 & 1 & 1
\end{array}\right)}_{B} \underbrace{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)}_{x}=\underbrace{\left(\begin{array}{l}
2 \\
0 \\
4
\end{array}\right)}_{c} \Longrightarrow \begin{array}{c}
x_{1}=2 \\
-x_{1}+2 x_{2}=0 \Longrightarrow x_{2}=1 \\
2 x_{1}+x_{2}+x_{3}=4 \Longrightarrow x_{3}=-1
\end{array} \Longrightarrow x=\begin{array}{c}
2 \\
1 \\
-1
\end{array}) .
$$

Of course, there are much more laborious ways to solve this problem by explicitly inverting and multiplying a bunch of matrices.
(b) The key thing to realize is that the matrix $A^{-1} B=B^{-1} C B$ is similar to the matrix \triangle, so its trace (and determinant, and eigenvalues) match those of C. By inspection, then, $\operatorname{trace}\left(A^{-1} B\right)=\operatorname{trace}(C)=2+2+2=6$.

Another way of seeing this is to use the "cyclic property" of the trace: $\operatorname{trace}\left(A^{-1} B\right)=\operatorname{trace}(\underbrace{B A^{-1}})$. It's not really correct terminology to

$$
=B B^{-1} C=C
$$

say that $A^{-1} B$ and $B A^{-1}$ are "cyclic", however-a "cyclic matrix" refers to something else entirely. But it is true that given a product of matrices, you can take a cyclic permutation of the product, and get the same eigenvalues as well as the same trace: (More precisely: $X Y$ and $Y X$ have identical eigenvalues for any square X and Y, and the nonzero eigenvalues are the same even for non-square X and Y ! But we often don't cover this fact in 18.06.)

Actually calculating $A^{-1} B$ is a lot more work (even for a computer, though for matrices this tiny it hardly matters) and very error-prone (by hand), but if you managed to do it all correctly you would get $A^{-1}=$ $\left(\begin{array}{ccc}2 & 0 & 4 \\ 1 & 1 & 3 \\ -1 & 1 & -9\end{array}\right)$ and $A^{-1} B=\left(\begin{array}{ccc}10 & 4 & 4 \\ 6 & 5 & 3 \\ -20 & -7 & -9\end{array}\right)$, which of course has the same trace $10+5-9=6$.
(c) We just need a basis for $N(C-2 I)$:

$$
(C-2 I) x=\overrightarrow{0}=\left(\begin{array}{lll}
0 & & 4 \\
& 0 & 2 \\
4 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

but this can be done either by inspection or simply working top-to-bottom. The first two rows immediately give $x_{3}=0$ and the last row gives $4 x_{1}+$ $2 x_{2}=0 \Longrightarrow x_{2}=-2 x_{1}$. So, for example, we could pick $x_{1}=1$ and get an eigenvector

$$
x=\left(\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right)
$$

or any nonzero scalar multiple thereof.

Problem $6[4+4+4+4+4$ points]:

The matrix A has eigenvalues $\lambda_{1}=1, \lambda_{2}=-2$, and $\lambda_{3}=0$, with corresponding eigenvectors $x_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), x_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), x_{3}=\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$. Consider the recurrence

$$
A y_{n+1}=y_{n}-3 y_{n+1}
$$

starting with some initial vector y_{0}.
(a) Give an exact formula for $y_{n}=$ \qquad in terms of A, I, y_{0}, n. (For example, $y_{n}=\left(e^{n A}+7 I\right) y_{0}$ is a possible but incorrect answer.)
(b) For a typical initial vector y_{0} (e.g. one chosen at random with randn(3) in Julia), you should expect y_{n} for large n to be approximately parallel to the vector \qquad and growing/decaying/oscillating/nearly constant with n (circle one).
(c) Give an example of an initial vector $y_{0}=$ \qquad for which y_{n} is decaying towards zero with n, and for this y_{0} give an exact numeric formula (in terms of n) for $y_{n}=$ \qquad . (There are many possible answers, but not much calculation should be needed.) Your answer should have no matrices or unknowns, only vectors of numbers or simple arithmetic expressions like 2^{n} or e^{n} or $\frac{1}{n^{2}}$.
(d) The matrix A can/must/cannot be Hermitian (circle one). Briefly justify your answer.
(e) For $y_{0}=\left(\begin{array}{c}0 \\ -4 \\ 1\end{array}\right)$, give a good approximate formula for $y_{100}=$ \qquad (numeric vector, no unknowns or matrices).

Solution:

(a) $A y_{n+1}=y_{n}-3 y_{n+1} \Longrightarrow A y_{n+1}+3 y_{n+1}=(A+3 I) y_{n+1}=y_{n} \Longrightarrow$ $y_{n+1}=(A+3 I)^{-1} y_{n}$. Note that $A+3 I$ must be invertible because A has no eigenvalues of -3 . Starting with y_{0}, we then get $y_{1}=(A+3 I)^{-1} y_{0}$, followed by $y_{2}=(A+3 I)^{-1} y_{1}=(A+3 I)^{-2} y_{0}$, and so on, so

$$
y_{n}=(A+3 I)^{-n} y_{0}
$$

for any n.
(b) Since A has eigenvalues $1,-2,0$, it follows that $(A+3 I)^{-n}$ has eigenvalues $(1+3)^{-n},(-2+3)^{-n},(0+3)^{-n}=\frac{1}{4^{n}}, 1^{n}, \frac{1}{3^{n}}$. Two of these are decaying exponentially with n, so for large n we should expect y_{n} to be dominated by the 1^{n} term, which is parallel to x_{2} and is nearly constant with n. (The only exception would be if the x_{2} coefficient is exactly zero, which is very unlikely for a random initial vector.)
(c) To get a decaying solution, we just need y_{0} to be a nonzero vector in the span of x_{1} and x_{3}, so that the x_{2} coefficient is zero. For example, we could simply pick $y_{0}=x_{1}$ and get $y_{n}=\frac{1}{4^{n}} x_{1}$. More generally, we could pick $y_{0}=c_{1} x_{1}+c_{3} x_{3}$ for any coefficients c_{1}, c_{3} in which case we will get $y_{n}=\frac{c_{1}}{4^{n}} x_{1}+\frac{c_{3}}{3^{n}} x_{3}$.
(d) A cannot be Hermitian because the given eigenvectors are not orthogonal for distinct eigenvalues.
(e) We just need to write this initial vector in the basis of eigenvectors $y_{0}=$ $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}$ and then multiply the terms by $\frac{1}{4^{n}}, 1^{n}, \frac{1}{3^{n}}$ respectively to get y_{n}. Unfortunately, since the eigenvectors are not orthogonal, we cannot simply find the coefficients by taking dot products (which would be nice because we only need the x_{2} coefficient at the end), but have to solve a linear system for the coefficients:

$$
\underbrace{\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right)}_{X=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)} \underbrace{\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)}_{c}=\underbrace{\left(\begin{array}{c}
0 \\
-4 \\
1
\end{array}\right)}_{y_{0}} .
$$

Proceeding by Gaussian elimination, we only need to do a single elimination step (subtract the first row of X from the third row) to get it in upper-triangular form, and the same thing to the right-hand side, yielding:

$$
\underbrace{\left(\begin{array}{ccc}
\boxed{1} & 1 & 1 \\
& 1 & 0 \\
& & \boxed{1}
\end{array}\right)}_{X \leadsto U} \underbrace{\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)}_{c}=\underbrace{\left(\begin{array}{c}
0 \\
-4 \\
1
\end{array}\right)}_{y_{0} \rightsquigarrow b} \Longrightarrow \begin{gathered}
\ldots \\
c_{2}=-4 \\
\cdots
\end{gathered} .
$$

We don't even need to solve for c_{3} and c_{1} in this particular case, because U is so nice, but if we did we would easily find $c_{3}=1$ and $c_{1}=3$. So,

$$
y_{100}=\frac{c_{1}}{4^{100}} x_{1}+c_{2} x_{2}+\frac{c_{3}}{3^{100}} x_{3} \approx c_{2} x_{2}=-4 x_{2}=\left(\begin{array}{l}
-4 \\
-4 \\
-4
\end{array}\right),
$$

since the x_{1} and x_{2} terms are negligible.

Problem 7 [$5+8+5$ points]:

The real Hermitian (real-symmetric) matrix A has an eigenvalue $\lambda_{1}=-\frac{1}{2}$ (clarification: with multiplicity 1, not a repeated root) and a corresponding eigenvector $x_{1}=\left(\begin{array}{c}1 \\ 2 \\ -1 \\ 0 \\ 1\end{array}\right)$, and its other eigenvalues are all equal to 1.
(a) Give one example of an eigenvector of A for $\lambda_{2}=1$.
(b) The orthogonal projection of $b=\left(\begin{array}{l}3 \\ 1 \\ 0 \\ 1 \\ 2\end{array}\right)$ onto the $\operatorname{span} S$ of x_{1} is and the projection of b onto the orthogonal complement S^{\perp} is \qquad .
(c) With the help of the previous part, an exact formula for $A^{n}\left(\begin{array}{l}3 \\ 1 \\ 0 \\ 1 \\ 2\end{array}\right)=$
\qquad (in terms of n and explicit numerical vectors, no matrices or unknowns).

Solution:

(a) The key thing is to realize that we just need any nonzero vector $\perp x_{1}$, for example | $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right)$ |
| :---: |
| works. |

Since A is Hermitian, any eigenvector for eigenvalues $\neq \lambda_{1}$ must be \perp x_{1}, i.e. in the orthogonal complement of the span of x_{1}, which is 4dimensional. Since all of the other eigenvalues are 1, the eigenvalue of 1 must have multiplicity 4 (there are 5 eigenvalues in total, counting repeated roots) and there must be 4 eigenvectors for that eigenvalue together with x_{1}, they must form a basis for \mathbb{R}^{5} (since A is Hermitian therefore diagonalizable). So, the eigenvectors for $\lambda=1$ must be the whole 4-dimensional subspace $\perp x_{1}$.
(b) The projection onto S is

$$
p=\frac{x_{1} x_{1}^{T}}{x_{1}^{T} x_{1}} b=x_{1} \frac{x_{1}^{T} b^{7}}{x_{1}^{T} x_{1}} \overline{\overline{7}} x_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1 \\
0 \\
1
\end{array}\right)
$$

Note that, as usual it would be equivalent but much more work to first
compute the 5×5 rank-1 projection matrix $P=\frac{x_{1} x_{1}^{T}}{x_{1}^{T} x_{1}}=\frac{1}{7}\left(\begin{array}{ccccc}1 & 2 & -1 & 0 & 1 \\ 2 & 4 & -2 & 0 & 2 \\ -1 & -2 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 & 1\end{array}\right)$
and then multiply it by b. Parentheses make a big practical difference in linear algebra! The projection onto S^{\perp} is simply

$$
e=(I-P) b=b-p=b-x_{1}=\left(\begin{array}{c}
2 \\
-1 \\
1 \\
1 \\
1
\end{array}\right) .
$$

Again, it would be a lot more work to first compute $I-P=\frac{1}{7}\left(\begin{array}{ccccc}6 & -2 & 1 & 0 & -1 \\ -2 & 3 & 2 & 0 & -2 \\ 1 & 2 & 6 & 0 & 1 \\ 0 & 0 & 0 & 7 & 0 \\ -1 & -2 & 1 & 0 & 6\end{array}\right)$
and then multiply it by b.
(c) We can write b as the sum of the two projections, $b=p+e$, and notice that the first term p is an eigenvector of $\lambda_{1}=-\frac{1}{2}$ and the second term is in the orthogonal complement and hence (from part a) an eigenvector of $\lambda=1$. So,

$$
A^{n} b=\lambda_{1}^{n} p+1^{n} e=\frac{1}{(-2)^{n}}\left(\begin{array}{c}
1 \\
2 \\
-1 \\
0 \\
1
\end{array}\right)+\left(\begin{array}{c}
2 \\
-1 \\
1 \\
1 \\
1
\end{array}\right) \text {. }
$$

Problem 8 [$5+8+5$ points]:

Suppose that Q is a 4×3 real matrix with orthonormal columns q_{1}, q_{2}, q_{3}.
(a) Starting from a real vector v (not in the column space of Q), give a formula for the fourth orthonormal vector q_{4} that would be produced by Gram-Schmidt on q_{1}, q_{2}, q_{3}, v.
(b) Describe $N(Q), N\left(Q^{T}\right), N\left(Q^{T} Q\right)$, and $N\left(Q Q^{T}\right)$: give the dimension and a basis for each (in terms of $q_{1}, q_{2}, q_{3}, q_{4}$ as needed).
(c) Suppose $b=q_{1}+2 q_{2}+3 q_{3}+4 q_{4}$. Give the least-squares solution $\hat{x}=$
\qquad minimizing $\|b-Q x\|$.

Solution:

(a) The Gram-Schmidt formula is

$$
q_{4}=\frac{v-Q Q^{T} v}{\left\|v-Q Q^{T} v\right\|}=\frac{v-q_{1} q_{1}^{T} v-q_{2} q_{2}^{T} v-q_{3} q_{3}^{T} v}{\left\|v-q_{1} q_{1}^{T} v-q_{2} q_{2}^{T} v-q_{3} q_{3}^{T} v\right\|}
$$

i.e. we subtract the projection onto $C(Q)$ and then normalize. It is important that $v \notin C(Q)$ since otherwise subtracting the projection would give zero (and we would then divide by zero).
(b) Q has orthonormal columns and thus is full column rank. Hence $N(Q)=\{\overrightarrow{0}\} \subset$ \mathbb{R}^{3}, i.e. it is zero-dimensional and the basis is the empty set $\}$ (zero basis vectors for zero dimensions). $N\left(Q^{T}\right)=C(Q)^{\perp}$ is everything perpendicular to q_{1}, q_{2}, q_{3}, but this is simply the 1-dimensional space $N\left(Q^{T}\right)=\operatorname{span} q_{4}$. We also know $N\left(Q^{T} Q\right)=N(Q)=\{\overrightarrow{0}\}$ and $N\left(Q Q^{T}\right)=N\left(Q^{T}\right)=\operatorname{span} q_{4}$ from the general identity $N\left(A^{T} A\right)=N(A)$.
(c) We want $Q \hat{x}$ to be the projection of b onto $C(Q)$, i.e. $Q \hat{x}=q_{1}+2 q_{2}+3 q_{3}$, which implies $\hat{x}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.

