MIT 18.06 Final Exam Solutions, Fall 2022, Johnson

Problem 1 [5+10 points]:

Ax = b has solutions $x_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $x_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, and possibly other solutions, for some (real) matrix A and right-hand side b.

- (a) A is an $m \times n$ matrix with rank r. Give as much true information as possible about m, n, r. (For example, " $m = 16, r = 0, n \le 12$ " is a possible, but incorrect, answer.)
- (b) Give another solution $x_3 =$ (different from x_1 and x_2) for the same equation Ax = b. You can do this because you know a nonzero vector _____ in the _____ space of A.

Solution:

- (a) We must have |n=3| because the solutions have 3 components. Since the solutions are not unique, A cannot have full column rank and so $0 \le r \le 2$. We must have $m \ge r$ rows (which is true for any matrix).
- (b) The difference $x_2 x_1 = \begin{vmatrix} 3 \\ 3 \\ 3 \end{vmatrix}$ between two solutions (or any multiple

thereof) must be a vector in the **null space** of A. So, we can find more solutions simply by adding any multiple of this to x_1 or x_2 , for example

 $x_{2} + (x_{2} - x_{1}) = \left| \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \right|$ is a solution, or in fact *any* vector of the form $x_{1} + \frac{\alpha}{3}(x_{2} - x_{1}) = \left| \begin{pmatrix} \alpha + 1 \\ \alpha + 2 \\ \alpha + 3 \end{pmatrix} \right|$ for any scalar α (this is the "complete"

solution to Ax = b, though you weren't required to write this explicitly).

Problem 2 [10+5 points]:

Robert "Bobby Boy" Boyle (way back in 1662) measured a sequence of m data points $(p_1, v_1), (p_2, v_2), \ldots, (p_m, v_m)$ relating the pressure p of a gas to its volume v. Suppose that he wanted to fit his data to a model of the form

$$V(P) = \alpha + \frac{\beta}{P}$$

and solve for the unknown coefficients α and β that minimize the sum-of-squares error $\sum_{k} [v_k - V(p_k)]^2$ between the model and the measured data.

- (a) Write down a ______ system of linear equations (matrix?)(unknowns?) = (right-hand side?) that Bobby could solve to find these best-fit coefficients α and β . You can leave the matrix and right-hand-side as products of terms involving other matrices and/or vectors, but **clearly describe how** each term is constructed from the data $(p_1, v_1), (p_2, v_2), \ldots, (p_m, v_m)$.
- (b) Using these best-fit α and β values, the vector $\delta = \begin{pmatrix} v_1 V(p_1) \\ v_2 V(p_2) \\ \vdots \\ v_m V(p_m) \end{pmatrix}$ of

discrepancies between the model and the data is an orthogonal projection of the vector _____ onto the _____ space of the matrix _____ .

Solution:

(a) There are 2 unknowns, so we will have a 2×2 system of equations given by the **normal equations** for our least-square problem:

$$A^T A \underbrace{\left(\begin{array}{c} \alpha \\ \beta \end{array}\right)}_{\hat{x}} = A^T b$$

where

$$A = \underbrace{\begin{pmatrix} 1 & \frac{1}{p_1} \\ 1 & \frac{1}{p_2} \\ \vdots & \vdots \\ 1 & \frac{1}{p_m} \end{pmatrix}}_{m \times 2}, \qquad b = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix}$$

since we want to minimize $\sum_{k} [v_k - V(p_k)]^2 = ||b - Ax||^2$.

(b) The vector δ is precisely the error ("residual") $\delta = b - A\hat{x}$. Recall that the least-square solution \hat{x} is chosen so that $p = A\hat{x} = Pb$ is the projection of b onto C(A), and $\delta = b - A\hat{x} = b - p = (I - P)b$ is the **projection of** [b]

onto $N(A^T)$, the left nullspace of A.

(If you've forgotten this, it's always useful to draw a sketch of least-square fitting to remind yourself that the b - Ax is minimized when Ax is the orthogonal projection of b onto C(A).)

Problem 3 [5+10 points]:

Consider the system of differential equations

$$\frac{dx}{dt} = \left(\begin{array}{cc} -1 & 2\\ & a \end{array}\right) x$$

with initial condition $x(0) = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

- (a) For what value(s) of a will the solution x(t) approach a nonzero constant vector at large t?
- (b) Using the value of a from the previous part, write down the exact solution x(t) (at all times, not just for large t).

Solution:

(a) To make the ODE solution $x(t) = e^{At}$ go to a nonzero constant, we want one $e^{\lambda t}$ term to be constant (i.e. $\lambda = 0$) and the other $e^{\lambda t}$ term to be decaying (i.e. $\operatorname{Re}(\lambda) < 0$). Since $A = \begin{pmatrix} -1 & 2 \\ a \end{pmatrix}$ is an upper-triangular, $\det(A - \lambda I)$ is just the product of the diagonals $(-1 - \lambda)(a - \lambda)$ and the eigenvalues are $\lambda_1 = -1$ and $\lambda_2 = a$. The first eigenvalue gives decaying solutions, so we need $\underline{a = 0}$ to get a constant solution from the other term.

Technically, we also need to check that x(0) has a nonzero coefficient of the $\lambda_2 = 0$ eigenvector, but we will verify this in part (b).

(b) To obtain x(t), we need to (1) expand x(0) in the basis of eigenvectors and (2) multiply each term by $e^{\lambda t}$. That is, we are looking for the solution:

$$x(t) = e^{At}x(0) = \underbrace{\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)}_X \underbrace{\left(\begin{array}{c} e^{-t} \\ e^{0t} \end{array}\right)}_{e^{\Lambda t}} \underbrace{X^{-1}x(0)}_{c} = c_1 e^{-t}x_1 + c_2 x_2,$$

which corresponds to expanding a solution in the basis of the eigenvectors x_1, x_2 , finding the coefficients c from x(0), and multiplying each term by the corresponding $e^{\lambda t}$.

First, we need to *find* the eigenvectors, but this a straightforward exercise in computing nullspaces (which in this simple case can be done by inspection):

$$(A - \chi_1^{-1}I)x_1 = \begin{pmatrix} 0 & 2\\ & 1 \end{pmatrix} x_1 = \vec{0} \implies x_1 = \begin{pmatrix} 1\\ 0 \end{pmatrix},$$

$$(A - \cancel{x_2}^0) x_2 = \begin{pmatrix} -1 & 2 \\ & 0 \end{pmatrix} x_2 = \vec{0} \implies x_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Now, to expand x(0) this basis, we write

$$x(0) = \begin{pmatrix} 3\\1 \end{pmatrix} = c_1 \underbrace{\begin{pmatrix} 1\\0 \end{pmatrix}}_{x_1} + c_2 \underbrace{\begin{pmatrix} 2\\1 \end{pmatrix}}_{x_2} = \underbrace{\begin{pmatrix} 1&2\\1 \end{pmatrix}}_{X} \underbrace{\begin{pmatrix} c_1\\c_2 \end{pmatrix}}_{c} \implies c = \begin{pmatrix} 1\\1 \end{pmatrix},$$

which is solvable by inspection, or by using the fact that X is uppertriangular so we can do backsubstitution (with no elimination steps). (If we wrote the eigenvalues in the opposite order we would have gotten a lower-triangular X, from which we could do forward-substitution.) Hence

$$x(t) = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2 = e^{-t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + e^{0t} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \boxed{\begin{pmatrix} 2 + e^{-t} \\ 1 \end{pmatrix}},$$

which clearly approaches the nonzero constant vector x_2 as desired in part (a), since $c_2 \neq 0$.

Problem 4 [4+4+4+4+4 points]:

The following short-answer questions are answered independently (and refer to unrelated matrices A for each part), requiring little or no computation:

- (a) Any solution x of Ax = b is a sum of a vector in the _____ space of A and a vector in the in the _____ space of A.
- (b) If Ax = b is solvable for any b, then it might be a (circle one) 10×3 or 3×10 matrix with rank r =_____. If Ax = b has a unique solution x for some b then it might be a (circle one) 10×3 or 3×10 matrix with rank r =_____.
- (c) Relate the four fundamental subspaces of $A^T A$ to the four fundamental subspaces of a real matrix A: nullspace of $A^T A = _$ ______ space of A, left nullspace of $A^T A = _$ ______ space of A, column space of $A^T A = _$ ______ space of A, row space of $A^T A = _$ ______ space of A.
- (d) Suppose we solve $A^T A \hat{x} = A^T b$ for \hat{x} given some real A. Then, the orthogonal projection of b into C(A) is the vector _____ and the projection of b onto $N(A^T)$ is the vector _____. (Give formulas in terms of A, b, \hat{x} involving no matrix inverses.)
- (e) Which of the following matrices **cannot** be singular for **any** real square matrix A (circle **all** answers): A^TA , A^2+I , $(A+A^T)^2+I$, e^{-A} , $A+10^{100}I$, $3A^TA + 4I$.

Solution:

- (a) The **row space** $C(A^H)$ and the **null space** N(A), since together these give the whole space \mathbb{R}^n of possible inputs of any $m \times n$ matrix A.
- (b) If it's solvable for any b, then A must be a "wide" matrix with full row rank, for example a 3×10 matrix with rank r = 3. If the solutions are unique, then A must be a "tall" matrix with full column rank, for example a 10×3 matrix with rank r = 3.
- (c) We showed in class that the nullspace of $A^T A$ matches that of A and the column space matches that of A^T . Furthermore, since $A^T A$ is realsymmetric, i.e. $(A^T A)^T = A^T A$, the same things hold true of the left nullspace and the row space. So the nullspace is $N(A^T A) = N(A)$, the left nullspace is $N((A^T A)^T) = N(A)$, the column space is $C(A^T A) = C(A^T)$ and the row space is $C((A^T A)^T) = C(A^T)$.
- (d) The orthogonal projection of b onto C(A) is $A\hat{x}$ and the projection of b onto $N(A^T)$ is $b A\hat{x}$. This is how we derived the normal equations $A^T A\hat{x} = A^T b$ in the first place!

(e) $A^T A$ can be singular since it is only semidefinite (e.g. suppose A = 0). $A^2 + I$ can be singular if A has an eigenvalue of $\pm i$ (possible for real A!). $\boxed{(A + A^T)^2 + I}$ cannot be singular since $A + A^T$ is real-symmetric with real eigenvalues, so the eigenvalues of $(A + A^T)^2 + I$ are $(\text{real})^2 + 1 > 0$. $\boxed{e^{-A}}$ cannot be singular since $e^{-\lambda} \neq 0$ for any eigenvalue λ of A. $A + 10^{100}I$ can be singular if A has an eigenvalue $\lambda = -(10^{100})$. $\boxed{3A^TA + 4I}$ cannot be singular since $A^T A$ is semidefinite with eigenvalues ≥ 0 , so $3A^T A + 4I$ has eigenvalues of the form $3(\text{something} \geq 0) + 4 > 0$.

Problem 5 [10+5+5 points]:

Suppose you have a matrix $A = C^{-1}B$ where

$$B = \begin{pmatrix} 1 & & \\ -1 & 2 & \\ 2 & 1 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & 4 & \\ 2 & 2 & \\ 4 & 2 & 2 \end{pmatrix}.$$

The following parts can be **answered independently**.

- (a) Compute the first column of A^{-1} .
- (b) Compute the **trace** of the matrix $A^{-1}B$. (Little calculation is required because $A^{-1}B$ has the same trace, and the same eigenvalues, as _____, since the two matrices are ____!)
- (c) One of the eigenvalues of C is $\lambda_1 = 2$. A corresponding eigenvector is $x_1 = \underline{\qquad}$.

Solution:

(a) We can do this without computing A^{-1} explicitly (which is almost always a mistake). We just need to compute

$$x = A^{-1} \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \left(C^{-1}B\right)^{-1} \begin{pmatrix} 1\\0\\0 \end{pmatrix} = B^{-1} \underbrace{C \begin{pmatrix} 1\\0\\0 \end{pmatrix}}_{b} .$$

triangular solve
$$Bx=b$$

The first step is $b = C \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$, just the first column of c. The

second step is to compute $x = B^{-1}b$ by solving Bx = b for x, but since B is lower-triangular we can do this easily by forward-substitution:

$$\underbrace{\begin{pmatrix}1\\-1&2\\2&1&1\end{pmatrix}}_{B}\underbrace{\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\end{pmatrix}}_{x} = \underbrace{\begin{pmatrix}2\\0\\4\end{pmatrix}}_{c} \implies x_{1} = 2 \qquad \qquad \Rightarrow x_{2} = 1 \qquad \Rightarrow x = \boxed{\begin{pmatrix}2\\1\\-1\end{pmatrix}}.$$

Of course, there are much more laborious ways to solve this problem by explicitly inverting and multiplying a bunch of matrices.

(b) The key thing to realize is that the matrix $A^{-1}B = B^{-1}CB$ is similar to the matrix C, so its trace (and determinant, and eigenvalues) match those of C. By inspection, then, trace $(A^{-1}B) = \text{trace}(C) = 2+2+2 = 6$.

Another way of seeing this is to use the "cyclic property" of the trace: $\operatorname{trace}(A^{-1}B) = \operatorname{trace}(\underbrace{BA^{-1}})$. It's not really correct terminology to say that $A^{-1}B$ and BA^{-1} are "cyclic", however—a "cyclic matrix" refers

to something else entirely. But it is true that given a product of matrices, you can take a cyclic permutation of the product, and get the same eigenvalues as well as the same trace: (More precisely: XY and YX have identical eigenvalues for any square X and Y, and the nonzero eigenvalues are the same even for non-square X and Y! But we often don't cover this fact in 18.06.)

Actually calculating $A^{-1}B$ is a *lot* more work (even for a computer, though for matrices this tiny it hardly matters) and very error-prone (by

hand), but if you managed to do it all correctly you would get $A^{-1} = \begin{pmatrix} 2 & 0 & 4 \\ 1 & 1 & 3 \\ -1 & 1 & -9 \end{pmatrix}$ and $A^{-1}B = \begin{pmatrix} 10 & 4 & 4 \\ 6 & 5 & 3 \\ -20 & -7 & -9 \end{pmatrix}$, which of course has the same trace 10 + 5 - 9 = 6.

(c) We just need a basis for N(C-2I):

$$(C-2I)x = \vec{0} = \begin{pmatrix} 0 & 4 \\ & 0 & 2 \\ 4 & 2 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

but this can be done either by inspection or simply working top-to-bottom. The first two rows immediately give $x_3 = 0$ and the last row gives $4x_1 +$ $2x_2 = 0 \implies x_2 = -2x_1$. So, for example, we could pick $x_1 = 1$ and get an eigenvector

$$x = \left(\begin{array}{c} 1\\ -2\\ 0 \end{array} \right)$$

or any nonzero scalar multiple thereof.

Problem 6 [4+4+4+4+4 points]:

The matrix A has eigenvalues $\lambda_1 = 1$, $\lambda_2 = -2$, and $\lambda_3 = 0$, with corresponding eigenvectors $x_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $x_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $x_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$. Consider the recurrence

$$1y_{n+1} = y_n - 3y_{n+1},$$

starting with some initial vector y_0 .

- (a) Give an exact formula for $y_n = _$ in terms of A, I, y_0, n . (For example, $y_n = (e^{nA} + 7I)y_0$ is a possible but incorrect answer.)
- (b) For a typical initial vector y₀ (e.g. one chosen at random with randn(3) in Julia), you should expect y_n for large n to be approximately parallel to the vector ______ and growing/decaying/oscillating/nearly constant with n (circle one).
- (c) Give an example of an initial vector $y_0 = _$ for which y_n is **decay**ing towards zero with n, and for this y_0 give an *exact* numeric formula (in terms of n) for $y_n = _$. (There are many possible answers, but not much calculation should be needed.) Your answer should have no matrices or unknowns, only vectors of numbers or simple arithmetic expressions like 2^n or e^n or $\frac{1}{n^2}$.
- (d) The matrix A can/must/cannot be Hermitian (circle one). Briefly justify your answer.
- (e) For $y_0 = \begin{pmatrix} 0 \\ -4 \\ 1 \end{pmatrix}$, give a good approximate formula for $y_{100} =$ _____

(numeric vector, no unknowns or matrices).

Solution:

(a) $Ay_{n+1} = y_n - 3y_{n+1} \implies Ay_{n+1} + 3y_{n+1} = (A+3I)y_{n+1} = y_n \implies y_{n+1} = (A+3I)^{-1}y_n$. Note that A+3I must be invertible because A has no eigenvalues of -3. Starting with y_0 , we then get $y_1 = (A+3I)^{-1}y_0$, followed by $y_2 = (A+3I)^{-1}y_1 = (A+3I)^{-2}y_0$, and so on, so

3n (+ 3-) 30

for any n.

(b) Since A has eigenvalues 1, -2, 0, it follows that $(A+3I)^{-n}$ has eigenvalues $(1+3)^{-n}, (-2+3)^{-n}, (0+3)^{-n} = \frac{1}{4^n}, 1^n, \frac{1}{3^n}$. Two of these are decaying exponentially with n, so for large n we should expect y_n to be dominated by the 1^n term, which is parallel to x_2 and is nearly **constant** with n. (The only exception would be if the x_2 coefficient is exactly zero, which is very unlikely for a random initial vector.)

- (c) To get a decaying solution, we just need y_0 to be a nonzero vector in the span of x_1 and x_3 , so that the x_2 coefficient is zero. For example, we could simply pick $y_0 = x_1$ and get $y_n = \frac{1}{4^n} x_1$. More generally, we could pick $y_0 = c_1 x_1 + c_3 x_3$ for any coefficients c_1, c_3 in which case we will get $y_n = \frac{c_1}{4^n} x_1 + \frac{c_3}{3^n} x_3$.
- (d) A cannot be Hermitian because the given eigenvectors are not orthogonal for distinct eigenvalues.
- (e) We just need to write this initial vector in the basis of eigenvectors $y_0 = c_1 x_1 + c_2 x_2 + c_3 x_3$ and then multiply the terms by $\frac{1}{4^n}$, 1^n , $\frac{1}{3^n}$ respectively to get y_n . Unfortunately, since the eigenvectors are not orthogonal, we cannot simply find the coefficients by taking dot products (which would be nice because we only need the x_2 coefficient at the end), but have to solve a linear system for the coefficients:

$$\underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}}_{X = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}} \underbrace{\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}}_{c} = \underbrace{\begin{pmatrix} 0 \\ -4 \\ 1 \end{pmatrix}}_{y_0}.$$

Proceeding by Gaussian elimination, we only need to do a single elimination step (subtract the first row of X from the third row) to get it in upper-triangular form, and the same thing to the right-hand side, yielding:

$$\underbrace{\begin{pmatrix} \boxed{1} & 1 & 1\\ & \boxed{1} & 0\\ & & \boxed{1} \end{pmatrix}}_{X \rightsquigarrow U} \underbrace{\begin{pmatrix} c_1\\ c_2\\ c_3 \end{pmatrix}}_c = \underbrace{\begin{pmatrix} 0\\ -4\\ 1 \end{pmatrix}}_{y_0 \rightsquigarrow b} \implies c_2 = -4 ...$$

We don't even need to solve for c_3 and c_1 in this particular case, because U is so nice, but if we did we would easily find $c_3 = 1$ and $c_1 = 3$. So,

$$y_{100} = \frac{c_1}{4^{100}} x_1 + c_2 x_2 + \frac{c_3}{3^{100}} x_3 \approx \left| \begin{array}{c} c_2 x_2 = -4x_2 = \begin{pmatrix} -4 \\ -4 \\ -4 \end{pmatrix} \right|,$$

since the x_1 and x_2 terms are negligible.

Problem 7 [5+8+5 points]:

The real Hermitian (real-symmetric) matrix A has an eigenvalue $\lambda_1 = -\frac{1}{2}$ (clarification: with multiplicity 1, not a repeated root) and a corresponding eigenvector

 $x_1 = \begin{pmatrix} 1\\ 2\\ -1\\ 0\\ 1 \end{pmatrix}$, and its other eigenvalues are all equal to 1.

(a) Give one example of an eigenvector of A for $\lambda_2 = 1$.

(b) The orthogonal projection of $b = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$ onto the span S of x_1 is ______ and the projection of b onto the orthogonal complement S^{\perp} is _____.

(c) With the help of the previous part, an *exact* formula for $A^n \begin{pmatrix} 3\\ 1\\ 0\\ 1\\ 2 \end{pmatrix} =$

(in terms of n and explicit numerical vectors, no matrices or unknowns).

Solution:

(a) The key thing is to realize that we just need any nonzero vector $\perp x_1$, for

example
$$\begin{pmatrix} 0\\0\\0\\1\\0 \end{pmatrix}$$
 works.

Since A is Hermitian, any eigenvector for eigenvalues $\neq \lambda_1$ must be \perp x_1 , i.e. in the orthogonal complement of the span of x_1 , which is 4dimensional. Since all of the other eigenvalues are 1, the eigenvalue of 1 must have multiplicity 4 (there are 5 eigenvalues in total, counting repeated roots) and there must be 4 eigenvectors for that eigenvalue together with x_1 , they must form a *basis* for \mathbb{R}^5 (since A is Hermitian therefore diagonalizable). So, the eigenvectors for $\lambda = 1$ must be the whole 4-dimensional subspace $\perp x_1$.

(b) The projection onto S is

$$p = \frac{x_1 x_1^T}{x_1^T x_1} b = x_1 \frac{x_1^T b}{x_1^T x_1}^7 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \\ 1 \end{bmatrix}.$$

Note that, as usual it would be equivalent but *much* more work to first

compute the 5×5 rank-1 projection matrix $P = \frac{x_1 x_1^T}{x_1^T x_1} = \frac{1}{7} \begin{pmatrix} 1 & 2 & -1 & 0 & 1\\ 2 & 4 & -2 & 0 & 2\\ -1 & -2 & 1 & 0 & -1\\ 0 & 0 & 0 & 0 & 0\\ 1 & 2 & -1 & 0 & 1 \end{pmatrix}$

and then multiply it by b. Parentheses make a big practical difference in linear algebra! The projection onto S^{\perp} is simply

$$e = (I - P)b = b - p = b - x_1 = \left(\begin{array}{c} 2\\ -1\\ 1\\ 1\\ 1\\ 1\end{array}\right)$$

Again, it would be a lot more work to first compute $I - P = \frac{1}{7} \begin{pmatrix} 6 & -2 & 1 & 0 & -1 \\ -2 & 3 & 2 & 0 & -2 \\ 1 & 2 & 6 & 0 & 1 \\ 0 & 0 & 0 & 7 & 0 \\ -1 & -2 & 1 & 0 & 6 \end{pmatrix}$

and then multiply it by b.

(c) We can write b as the sum of the two projections, b = p + e, and notice that the first term p is an eigenvector of $\lambda_1 = -\frac{1}{2}$ and the second term is in the orthogonal complement and hence (from part a) an eigenvector of $\lambda = 1$. So,

$$A^{n}b = \lambda_{1}^{n}p + 1^{n}e = \boxed{\frac{1}{(-2)^{n}} \begin{pmatrix} 1\\ 2\\ -1\\ 0\\ 1 \end{pmatrix}} + \begin{pmatrix} 2\\ -1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix}}$$

Problem 8 [5+8+5 points]:

Suppose that Q is a 4×3 real matrix with orthonormal columns q_1, q_2, q_3 .

- (a) Starting from a real vector v (not in the column space of Q), give a formula for the fourth orthonormal vector q_4 that would be produced by Gram–Schmidt on q_1, q_2, q_3, v .
- (b) Describe N(Q), $N(Q^T)$, $N(Q^TQ)$, and $N(QQ^T)$: give the dimension and a basis for each (in terms of q_1, q_2, q_3, q_4 as needed).
- (c) Suppose $b = q_1 + 2q_2 + 3q_3 + 4q_4$. Give the least-squares solution $\hat{x} =$ _____ minimizing ||b Qx||.

Solution:

(a) The Gram–Schmidt formula is

$v = v - QQ^T v$	$v - q_1 q_1^T v - q_2 q_2^T v - q_3 q_3^T v$
$q_4 = \frac{1}{\ v - QQ^T v\ } = \frac{1}{\ v - QQ^T v\ }$	$\frac{v - q_1 q_1 v - q_2 q_2 v - q_3 q_3 v}{\left\ v - q_1 q_1^T v - q_2 q_2^T v - q_3 q_3^T v\right\ }$

i.e. we subtract the projection onto C(Q) and then normalize. It is important that $v \notin C(Q)$ since otherwise subtracting the projection would give zero (and we would then divide by zero).

- (b) Q has orthonormal columns and thus is full column rank. Hence $N(Q) = \{\vec{0}\} \subset \mathbb{R}^3$, i.e. it is **zero-dimensional** and the basis is the **empty set** $\{\}$ (zero basis vectors for zero dimensions). $N(Q^T) = C(Q)^{\perp}$ is everything perpendicular to q_1, q_2, q_3 , but this is simply the **1-dimensional** space $N(Q^T) = \text{span } q_4$. We also know $N(Q^TQ) = N(Q) = \{\vec{0}\}$ and $N(QQ^T) = N(Q^T) = \text{span } q_4$ from the general identity $N(A^TA) = N(A)$.
- (c) We want $Q\hat{x}$ to be the projection of b onto C(Q), i.e. $Q\hat{x} = q_1 + 2q_2 + 3q_3$,

which implies $\begin{vmatrix} \hat{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{vmatrix}$