18.06 Problem Set 6

Due Wednesday, April 24

Problem 1. A city is served by two newspapers, the Star and the Times. Each year the Star loses 40% of its subscribers to the Times and retains 60% of its subscribers. During the same time period, the Times loses 10% of its subscribers to the Star while retaining the other 90%.

- a) Write down a Markov matrix that describes the transition of subscribers between the two papers each year.
- b) Find the steady state vector for the matrix in (a).
- c) After many years, approximately what percentage of the subscribers will subscribe to the Times?

Problem 2.

- a) Let U and V be unitary matrices. Show that U^{-1} and UV are unitary.
- b) Why is the determinant of a Hermitian matrix a real number?

Problem 3. Suppose A is a square matrix with eigenvalues 1 and $\frac{1}{3}$ and corresponding eigenvectors $\mathbf{v_1}$ and $\mathbf{v_2}$. Consider the relation $\mathbf{x}_{k+1} = A\mathbf{x}_k$ for integers $k \ge 1$, and $\mathbf{x}_0 = 2\mathbf{v_1} + 5\mathbf{v_2}$.

- a) Find a formula for \mathbf{x}_k in terms of the eigenvectors above.
- b) To what limit does \mathbf{x}_k tend as k tends to infinity?

Problem 4. Let r(t) and w(t) denote the rabbit and wolf populations in a particular area at time t. They change with respect to time according to the differential equations

$$\frac{dr}{dt} = 10r - 3w \quad , \quad \frac{dw}{dt} = 5r + 2w.$$

Find the functions r(t) and w(t) using the methods of section 6.3, and assuming that

$$r(0) = 30 = w(0)$$

Problem 5. Suppose A and B are $n \times n$ matrices with the properties that AB = BA and N(A) = N(B) (the nullspaces are the same).

- a) Show that if **v** is an eigenvector for A corresponding to the non-zero eigenvalue λ , then B**v** is also a λ -eigenvector for A.
- b) Suppose that A has distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, with corresponding eigenvectors $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$. Show that B is diagonalizable. (Hint: Show that A and B share the same eigenvectors. What is a basis for the λ_i -eigenspace?)