Denote by C_{ij} the $n \times n$ matrix having a 1 in the (i,j) entry, and 0’s everywhere else. In terms of these matrices we may write $E_{ij} = I - \ell_{ij}C_{ij}$ and $E^{-1}_{ij} = I + \ell_{ij}C_{ij}$. Thus we have

$$ME^{-1}_{ij} = M(I + \ell_{ij}C_{ij}) = M + \ell_{ij}MC_{ij}$$

The matrix MC_{ij} has all columns different from the j–th consisting entirely of 0’s. The j–th column of MC_{ij} is simply the i–th column of M. Since the matrix E_{ij} is a lower triangular matrix we have $i > j$, and since M is only filled in up to column j, the i–th column of M has exactly one 1 in the i–th row and 0’s everywhere else. Therefore the matrix MC_{ij} has exactly one non-zero entry in position (i,j) and this entry is a 1, i.e. $MC_{ij} = C_{ij}$.

We conclude that $ME^{-1}_{ij} = M + \ell_{ij}C_{ij} = N$, as required.

The effect of right multiplication by E^{-1}_{ij} on a matrix M is to leave the columns of M different from the j–th one unchanged, and replacing the j–th column of M by the sum of the j–th column of M with ℓ_{ij} times the i–th column of M.
