Problem 1

a) The column space is the space of all vectors whose last \(m - r \) coordinates are zero. This is clear since the rank of the matrix \(R \) is \(r \) and the first \(r \) columns of \(R \) are independent.

Denote by \(f_{ij} \) the entry in the \((i, j)\) position in \(F \). The nullspace of \(R \) is the space of all linear combinations of the \(n - r \) vectors

\[
\begin{pmatrix}
-f_{11} & -f_{12} & \cdots & -f_{1(n-r)} \\
-f_{21} & -f_{22} & & \vdots \\
\vdots & \vdots & & \vdots \\
-f_{r1} & -f_{r2} & \cdots & -f_{r(n-r)} \\
1 & 0 & \cdots & 0 \\
0 & 1 & & 0 \\
0 & 0 & & \vdots \\
\vdots & \vdots & & 0 \\
0 & 0 & \cdots & 1
\end{pmatrix}
\]

Clearly these vectors are linearly independent and therefore the dimension of the nullspace is \(n - r \).

b) The column space of the matrix \(B \) is the same as the column space of \(R \).

Denote by \(g_{ij} \) the entry in the \((i, j)\) position in the \(r \times (2n - r) \) matrix \(G := (F \ I \ F) \). Note that we have \(B = \begin{pmatrix} \begin{pmatrix} I & G \\ 0 & 0 \end{pmatrix} \end{pmatrix} \). The nullspace of \(B \) is the space of all linear combinations of the \(2n - r \) vectors

\[
\begin{pmatrix}
-g_{11} & -g_{12} & \cdots & -g_{1(2n-r)} \\
-g_{21} & -g_{22} & & \vdots \\
\vdots & \vdots & & \vdots \\
-g_{r1} & -g_{r2} & \cdots & -g_{r(2n-r)} \\
1 & 0 & \cdots & 0 \\
0 & 1 & & 0 \\
0 & 0 & & \vdots \\
\vdots & \vdots & & 0 \\
0 & 0 & \cdots & 1
\end{pmatrix}
\]

In terms of the matrix \(F \) we may write the same vectors as
c) The column space of B is the space of vectors in $2m$-dimensional space whose coordinates b_i satisfy the equations

$$b_i = b_{i+m} \quad 1 \leq i \leq m$$
$$b_j = 0 \quad r + 1 \leq j \leq m$$

i.e. they are the vectors of the form

$$\begin{pmatrix} b_1 \\ \vdots \\ b_r \\ 0 \\ \vdots \\ 0 \\ b_1 \\ \vdots \\ b_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

The nullspace of C is the same as the nullspace of R.

These vectors are clearly linearly independent, and therefore the nullspace of B has dimension $2n - r$.

\[
\begin{pmatrix}
-f_{11} & -f_{12} & -f_{1(n-r)} & -f_{11} & -f_{11(n-r)} \\
-f_{21} & -f_{22} & -f_{2(n-r)} & -f_{21} & -f_{21(n-r)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-f_{r1} & -f_{r2} & -f_{r(n-r)} & -f_{r1} & -f_{r1(n-r)} \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

\((n-r)\text{ vectors}\) \(r\text{ vectors}\) \((n-r)\text{ vectors}\)
d) The column space of D is the same as the column space of C. The nullspace of D is the same as the nullspace of B.

Problem 2

a) The nullspace of A is contained in the nullspace of A^2. The reason is that if $Ax = 0$, i.e. if x is in the nullspace of A, then $A^2x = A \cdot (Ax) = 0$. Thus x is also in the nullspace of A^2. Similarly we have

$$N(A) \subset N(A^2) \subset N(A^3) \subset \ldots$$

Note that one can prove that if A is an $n \times n$ matrix, then one has $N(A^n) = N(A^{n+1}) = \ldots$

b) The nullspace is by definition the set of all vectors v such that $\frac{d^2}{dx^2} v = 0$. This means that the polynomial v must be linear: $v = cx + d$. Thus the nullspace is the space of polynomials of degree at most one.

The nullspace of $\left(\frac{d^2}{dx^2} \right)^2$ is the nullspace of the composition of $\frac{d^2}{dx^2}$ with itself: it is the nullspace of $\frac{d^4}{dx^4}$. Thus the nullspace of $\frac{d^4}{dx^4}$ is the space of all polynomials of degree at most three: $v = ax^3 + bx^2 + cx + d$.

3