Challenge Problem 1

Suppose R (an $m \times n$ matrix) is in row reduced echelon form $\begin{pmatrix} I & F \\ 0 & 0 \end{pmatrix}$, with r nonzero rows and first r pivot columns.

a) Describe the column space and nullspace of R.
b) Do the same for the $m \times 2n$ matrix $B = \begin{pmatrix} R & R \end{pmatrix}$.
c) Do the same for the $2m \times n$ matrix $C = \begin{pmatrix} R \\ R \end{pmatrix}$.
d) Finally, do the same for the $2m \times 2n$ matrix $D = \begin{pmatrix} R & R \\ R & R \end{pmatrix}$.

Challenge Problem 2

a) Suppose that A is a 3×3 matrix. What relation is there between the nullspace of A and the nullspace of A^2? How about the nullspace of A^3?
b) The set of polynomials of degree at most four in the variable x is a vector space. What is the nullspace of $\frac{d^2}{dx^2}$? What is the nullspace of $\left(\frac{d^2}{dx^2}\right)^2$?