Your PRINTED name is: ____________________________

Please circle your recitation:

<table>
<thead>
<tr>
<th>Recitation</th>
<th>Time</th>
<th>Location</th>
<th>Instructor</th>
<th>Phone</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) M 2</td>
<td>T</td>
<td>2-131</td>
<td>A. Chan</td>
<td>2-588</td>
<td>alicec</td>
</tr>
<tr>
<td>2) M 3</td>
<td>T</td>
<td>2-131</td>
<td>A. Chan</td>
<td>2-588</td>
<td>alicec</td>
</tr>
<tr>
<td>3) M 3</td>
<td>M</td>
<td>2-132</td>
<td>D. Testa</td>
<td>2-586</td>
<td>damiano</td>
</tr>
<tr>
<td>4) T 10</td>
<td>T</td>
<td>2-132</td>
<td>C.I. Kim</td>
<td>2-273</td>
<td>ikim</td>
</tr>
<tr>
<td>5) T 11</td>
<td>T</td>
<td>2-132</td>
<td>C.I. Kim</td>
<td>2-273</td>
<td>ikim</td>
</tr>
<tr>
<td>6) T 12</td>
<td>T</td>
<td>2-132</td>
<td>W.L. Gan</td>
<td>2-101</td>
<td>wlgan</td>
</tr>
<tr>
<td>7) T 1</td>
<td>T</td>
<td>2-131</td>
<td>C.I. Kim</td>
<td>2-273</td>
<td>ikim</td>
</tr>
<tr>
<td>8) T 1</td>
<td>T</td>
<td>2-132</td>
<td>W.L. Gan</td>
<td>2-101</td>
<td>wlgan</td>
</tr>
<tr>
<td>9) T 2</td>
<td>T</td>
<td>2-132</td>
<td>W.L. Gan</td>
<td>2-101</td>
<td>wlgan</td>
</tr>
</tbody>
</table>
1 (17 pts.) If the output vectors from Gram-Schmidt are

\[q_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \quad \text{and} \quad q_2 = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \]

describe all possible input vectors \(a_1 \) and \(a_2 \).
2 (15 pts.) If a and b are nonzero vectors in \mathbb{R}^n, what number x minimizes the squared length $\|b - xa\|^2$?
Find the projection p of the vector $b = (1, 2, 6)$ onto the plane $x + y + z = 0$ in \mathbb{R}^3. (You may want to find a basis for this 2-dimensional subspace, even an orthogonal basis.)
Find the determinants of A and A^{-1} and the $(1,2)$ entry of A^{-1} if

$$A = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 3 \\
1 & 3 & 1 & 7
\end{bmatrix}.$$
5 (17 pts.) By recursion or cofactors or otherwise(!) compute the determinant of this 5 by 5 circulant matrix C:

$$C = \begin{bmatrix}
2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2 \\
\end{bmatrix}$$
Suppose P_1 is the projection matrix onto the 1-dimensional subspace spanned by the first column of A. Suppose P_2 is the projection matrix onto the 2-dimensional column space of A. After thinking a little, compute the product P_2P_1.

\[
A = \begin{bmatrix}
1 & 0 \\
2 & 1 \\
0 & 1 \\
1 & 2
\end{bmatrix}.
\]