Problem 1 Wednesday 2/07

Consider the following system of equations:

\[
\begin{align*}
 x + 3y + 2z &= 6 \\
 2x + 5y + 4z &= 1 \\
 3x + 8y + 6z &= 7 \\
\end{align*}
\]

What do you notice about the equations?
The first two planes intersect in a line. What do you know about that line and the third plane? How many solutions does the system have?

Problem 2 Wednesday 2/07

(a) Find a matrix \(A \) such that

\[
\begin{bmatrix}
 2 \\
 0 \\
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
 1 \\
 3 \\
\end{bmatrix}
\]

(b) What is

\[
\begin{bmatrix}
 3 \\
 3 \\
\end{bmatrix}
\]

Problem 3 Wednesday 2/07

Do problem 26 of section 2.1 in your book.

Problem 4 Wednesday 2/07

Let’s practice using Matlab to check that in general \(AB \) and \(BA \) are not equal. (Hint: you can type \texttt{diary} at the beginning of your session to save a transcript.)

Let’s start with matrices of different sizes. Let \(A=\text{ones}(3,2) \) and \(B=\text{ones}(2,3) \) (that is, the 3-by-2 and 2-by-3 matrices with all entries equal to 1). Compute \(AB \) and \(BA \). What are their sizes?

Now, let’s multiply to 3-by-3 matrices. Let \(C=\begin{bmatrix} a & b & c; d & e & f; g & h & i \end{bmatrix} \), where \(a \ldots i \) are nine of your favorite numbers. \textit{Now let the computer pick one:} \(D=\text{rand}(3,3) \) gives us a random 3-by-3 matrix. What are \(CD \) and \(DC \)? Are they equal?

Problem 5 Friday 2/09

Write examples of systems \(A\vec{x} = \vec{b} \) where \(A \) is a 3-by-3 matrix and:

1. the three planes meet in a common line
2. in the row picture, all three planes are parallel but distinct
3. the intersection of the first two planes does not intersect the third plane
4. \(\vec{b} \) is not a linear combination of the columns of \(A \).
5. in the column picture, \(\vec{b} \) is a multiple of the second column of \(A \).
Problem 6 Friday 2/09
Answer the following questions for the systems in problem 5:
(a) How many solutions does each have? Describe the shape (point, line, ...) of each solution set.
(b) Reduce each by elimination (you need not back-substitute) and check your answer.

Problem 7 Friday 2/09
Solve the following system by elimination and back substitution:

\[
\begin{align*}
2x + 3y + z &= 0 \\
x - 2y - z &= -3 \\
x + y + 2z &= 3
\end{align*}
\]
Write down the elimination matrices \(E_{21}, E_{31}, E_{32} \) you used.

Problem 8 Monday 2/12
Consider the matrices
\[
A = \begin{bmatrix} 5 & -3 & -9 \\ 2 & 4 & -1 \\ -1 & 7 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & -1 \\ 0 & 2 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ -3 & 3 \end{bmatrix}.
\]
(a) Find \(AB \) and \(AC \).
(b) Do you notice anything special? Why does this tell you \(A \) is not invertible?

Problem 9 Monday 2/12
Do problem 13 of section 2.4 in your book.

Problem 10 Monday 2/12
Do problem 7 of section 2.5 in your book.