18.06 Problem Set 6 - Solutions
Due Wednesday, April 11, 2007 at 4:00 p.m. in 2-106

Problem 1 Wednesday 4/4
Do problem 9 of section 6.1 in your book.

Solution 1

(a) Multiply A on the left to both sides of the equation $Ax = \lambda x$ to get $AAx = A\lambda x$. But $AAx = A^2x$ and $A\lambda x = \lambda Ax = \lambda^2 x$, so we have $A^2x = \lambda^2 x$, which means that λ^2 is an eigenvalue of A^2.

(b) Multiply $\lambda^{-1}A^{-1}$ on the left to both sides of the equation $Ax = \lambda x$ to get $\lambda^{-1}A^{-1}Ax = \lambda^{-1}A^{-1}\lambda x$. But $\lambda^{-1}A^{-1}Ax = \lambda^{-1}x$ and $\lambda^{-1}A^{-1}\lambda x = A^{-1}\lambda^2 = A^{-1}x$, so we have $A^{-1}x = \lambda^{-1}x$, which means that λ^{-1} is an eigenvalue of A^{-1}.

(c) Add x to both sides of the equation $Ax = \lambda x$ to get $Ax + x = \lambda x + x$. But this is exactly $(A + I)x = (\lambda + 1)x$, which means that $\lambda + 1$ is an eigenvalue of $A + I$.

Problem 2 Wednesday 4/4
Do problem 28 of section 6.1 in your book.

Solution 2

The matrix A has rank 1 (all rows are equal), which implies that 0 is an eigenvalue of A (the three independent vectors in the nullspace of A are the three independent eigenvectors with eigenvalue 0). Now let us find other eigenvalues. If $(x, y, z, w)^T$ is an eigenvector with eigenvalue $\lambda \neq 0$, then:

$$A \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x + y + z + w \\ x + y + z + w \\ x + y + z + w \\ x + y + z + w \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

But this implies that $x = y = z = w$ and furthermore $\lambda = 4$. Thus, the four eigenvalues of A are 0, 0, 0, 4.

The matrix B has rank 2 (rows 1 and 3 are equal, rows 2 and 4 are equal), which implies that 0 is an eigenvalue of A (the two independent vectors in the nullspace of A are the two independent eigenvectors with eigenvalue 0). Now let us find other eigenvalues. If $(x, y, z, w)^T$ is an eigenvector with eigenvalue $\lambda \neq 0$, then:

$$A \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x + z \\ y + w \\ x + z \\ y + w \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

But this implies that $x = z$ and $y = w$, and furthermore $\lambda = 2$ (we get two independent eigenvectors here: $(1, 0, 1, 0)^T$ and $(0, 1, 0, 1)^T$). Thus, the four eigenvalues of A are 0, 0, 2, 2.

Problem 3 Wednesday 4/4
Do problem 33 of section 6.1 in your book.
Solution 3

(a) Since \(u, v, w \) are independent, any vector \(x \) can be written as a linear combination of those, \(x = c_1 u + c_2 v + c_3 w \). Then

\[
Ax = A(c_1 u + c_2 v + c_3 w) = c_1 Au + c_2 Av + c_3 Aw = 3c_2 v + 5c_3 w
\]

If \(Ax = 0 \), then we must have \(c_2, c_3 = 0 \), so the vectors in the nullspace of \(A \) are multiples of \(u \), and a basis for \(N(A) \) is the vector \(u \).

All vectors \(Ax \) in the column space of \(A \) are linear combinations of \(v \) and \(w \): a basis for \(\text{C}(A) \) consists of the vectors \(v \) and \(w \).

(b) We want to find the solutions of \(Ax = v + w \). Let \(x = c_1 u + c_2 v + c_3 w \). Then as seen above \(Ax = 3c_2 v + 5c_3 w \), so we must have \(c_2 = \frac{1}{3} \) and \(c_3 = \frac{1}{5} \), while \(c_1 \) can take any values. The solution for this is of the form \(x = c_1 u + \frac{1}{3} v + \frac{1}{5} w \).

(c) \(Ax = u \) has no solution because if it did then \(u \) would be in the column space.

Problem 4 Wednesday 4/4

Let \(A \) be a fixed \(n \times n \) matrix. We would like to find a matrix \(B \) such that \(AB = BA \). This is the same as solving \(AB - BA = 0 \) matrix. It turns out that this is a system of \(n^2 \) equations on the entries of \(B \) (which are unknown). Since all these equations are linear, we can associate this system to a matrix \(M \). Find an eigenvector of this matrix \(M \) with its corresponding eigenvalue.

Solution 4

We have \(Mx = 0 \) exactly when the vector \(x \) corresponds to a matrix \(B \) that satisfies \(AB - BA = 0 \). But there is one case of such a matrix that is quite simple: just take \(B \) to be the matrix \(A \) itself! Then clearly \(AA - AA = 0! \) So if \(x \) is the vector corresponding to the matrix \(A \), then \(Mx = 0 \), and this means that \(x \) is an eigenvector of \(M \), with eigenvalue 0.

Problem 5 Monday 4/9

Do problem 7 of section 6.2 in your book.

Solution 5

We begin by computing the eigenvalues of \(A \), solving \(\det(A - \lambda I) = 0 \) for \(\lambda \).

\[
\det(A - \lambda I) = \det \begin{bmatrix} 4 - \lambda & 0 \\ 1 & 2 - \lambda \end{bmatrix} = (4 - \lambda)(2 - \lambda)
\]

The eigenvalues are \(\lambda = 2 \) and \(\lambda = 4 \).

Now, for each eigenvalue \(\lambda \), we want to find the eigenvectors, i.e., vectors in the nullspace of \(A - \lambda I \).

For \(\lambda = 2 \), we have \(A - 2I = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} \), so \(N(A - 2I) \) is generated by the vector \(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \). Thus, any vector of the form \(\begin{bmatrix} 0 \\ a \end{bmatrix} \) with \(a \neq 0 \) is a suitable eigenvector. For \(\lambda = 4 \), we have \(A - 4I = \begin{bmatrix} 0 & 0 \\ 1 & -2 \end{bmatrix} \), so \(N(A - 4I) \) is generated by the vector \(\begin{bmatrix} 2 \\ 1 \end{bmatrix} \). Thus, any vector of the form \(\begin{bmatrix} 2b \\ b \end{bmatrix} \) with \(b \neq 0 \) is a suitable eigenvector. Writing in these vectors as columns of a matrix we get a matrix \(S \) that diagonalizes \(A \):

\[
S = \begin{bmatrix} 0 & 2b \\ a & b \end{bmatrix} \quad \Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}
\]

If we switch the columns, we still get a matrix that diagonalizes \(A \):

\[
S = \begin{bmatrix} 2b & 0 \\ b & a \end{bmatrix} \quad \Lambda = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}
\]
We know that if \(x \) is an eigenvector of \(A \) (with eigenvalue \(\lambda \)), then it is also an eigenvector of \(A^{-1} \) (with eigenvalue \(\lambda^{-1} \)), so the same matrices \(S \) work for diagonalizing \(A^{-1} \) (the diagonal matrix changes accordingly).

Problem 6 Monday 4/9

Do problem 10 of section 6.2 in your book.

Solution 6

The equations \(G_{k+2} = \frac{1}{2}G_{k+1} + \frac{1}{2}G_k \) and \(G_{k+1} = G_{k+1} \) can be written in matrix form as

\[
\begin{bmatrix}
G_{k+2} \\
G_{k+1}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0
\end{bmatrix}
\begin{bmatrix}
G_{k+1} \\
G_k
\end{bmatrix}
\]

(a) Firstly, we find the eigenvalues of \(A = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0
\end{bmatrix} \) by solving \(\det(A - \lambda I) = 0 \) for \(\lambda \):

\[
\det(A - \lambda I) = \det\begin{bmatrix}
\frac{1}{2} - \lambda & \frac{1}{2} \\
\frac{1}{2} & -\lambda
\end{bmatrix} = (\lambda - 1)(\lambda + \frac{1}{2})
\]

The eigenvalues are \(\lambda = 1 \) and \(\lambda = -\frac{1}{2} \).

Now, we find the eigenvectors for each \(\lambda \). For \(\lambda = 1 \), we have \(A - I = \begin{bmatrix}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -1
\end{bmatrix} \), so \(N(A - I) \) is generated by the vector \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \), and this is an eigenvector. For \(\lambda = -\frac{1}{2} \), we have \(A + \frac{1}{2} I = \begin{bmatrix}
1 & \frac{1}{2} \\
1 & \frac{1}{2}
\end{bmatrix} \), so \(N(A + \frac{1}{2} I) \) is generated by the vector \(\begin{bmatrix} -1 \\ 2 \end{bmatrix} \), and this is another eigenvector.

(b) The eigenvector matrix is \(S = \begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix} \), its inverse is \(S^{-1} = \frac{2}{3} \begin{bmatrix}
1 & 1 \\
-1 & 1
\end{bmatrix} \), and the eigenvalue matrix is \(\Lambda = \begin{bmatrix}
1 & 0 \\
0 & -\frac{1}{2}
\end{bmatrix} \). Then \(A^n = S\Lambda^nS^{-1} \). As \(n \to \infty \),

\[
\Lambda^n = \begin{bmatrix}
1 & 0 \\
0 & -\frac{1}{2}
\end{bmatrix}^n = \begin{bmatrix}
1^n & 0 \\
0 & (-\frac{1}{2})^n
\end{bmatrix} \to \begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\]

Then,

\[
A^n = S\Lambda^nS^{-1} \to \begin{bmatrix}
1 & -1 \\
1 & 2
\end{bmatrix} \begin{bmatrix}
1^n & 0 \\
0 & (-\frac{1}{2})^n
\end{bmatrix} \begin{bmatrix}
2 & 1 \\
-1 & 1
\end{bmatrix} = \begin{bmatrix}
\frac{2}{3} & 2 \\
\frac{1}{3} & 1
\end{bmatrix}
\]

(c) Applying \(A \) repeatedly to \(\begin{bmatrix}
G_1 \\
G_0
\end{bmatrix} \) we get

\[
\begin{bmatrix}
G_{n+1} \\
G_n
\end{bmatrix} = A^n \begin{bmatrix}
G_1 \\
G_0
\end{bmatrix}
\]

But \(A^n \begin{bmatrix}
G_1 \\
G_0
\end{bmatrix} \to \frac{1}{3} \begin{bmatrix}
2 & 1 \\
2 & 1
\end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix}
\frac{2}{3} \\
\frac{2}{3}
\end{bmatrix} \), which implies that \(\begin{bmatrix}
G_{n+1} \\
G_n
\end{bmatrix} \to \begin{bmatrix}
\frac{2}{3} \\
\frac{2}{3}
\end{bmatrix} \), that is, the Gibonacci numbers \(G_n \) approach \(\frac{2}{3} \).

Problem 7 Monday 4/9

Do problems 15 and 16 of section 6.2 in your book.

Solution 7

Problem 15

If the eigenvalues of \(A \) are 2, 2, 5 then the matrix is certainly invertible, as its determinant is \(\det A = 2 \times 2 \times 5 = 20 \neq 0 \). Such a matrix could be diagonalizable or not, depending on whether or not there are two independent eigenvectors for the eigenvalue 2.
Problem 16
If the only eigenvectors of \(A \) are multiples of \((1, 4)\), i.e., there is only one independent eigenvector, then \(A \) must have a repeated eigenvalue, as eigenvectors corresponding to distinct eigenvalues are independent. This matrix is not diagonalizable, since there aren’t enough independent eigenvectors (we needed two of them for this 2-by-2 matrix). As for \(A \) being invertible or not, it depends on this repeated eigenvalue being zero: \(\det A = \lambda^2 = 0 \) iff \(\lambda = 0 \).

Problem 8 Monday 4/9
Do problem 22 of section 6.2 in your book.

Solution 8
We begin by computing the eigenvalues of \(A \) by solving \(\det(A - \lambda I) = 0 \) for \(\lambda \):
\[
\det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = (2 - \lambda)^2 - 1 = (1 - \lambda)(3 - \lambda)
\]
The eigenvalues are \(\lambda = 1 \) and \(\lambda = 3 \). Now, we find the corresponding eigenvectors. For \(\lambda = 1 \), we have \(A - I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \), so \(N(A - I) \) is generated by the vector \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \), which is an eigenvector of \(A \). For \(\lambda = 3 \), we have \(A - 3I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \), so \(N(A - 3I) \) is generated by the vector \(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \), which is another eigenvector of \(A \). The eigenvector matrix is
\[
S = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix},
\]
its inverse is
\[
S^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix},
\]
and the corresponding diagonal matrix is
\[
\Lambda = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}.
\]
We have \(A = SAS^{-1} \), and so \(A^k = SAS^{-1} \):
\[
A^k = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3^k + 1 & 3^k - 1 \\ 3^k - 1 & 3^k + 1 \end{bmatrix}
\]

Problem 9 Monday 4/9
Do problem 28 of section 6.2 in your book.

Solution 9
Let \(S \) be the set of 4-by-4 matrices that are diagonalized by the same eigenvector matrix \(S \), i.e., matrices \(A \) such that \(S^{-1}AS \) is a diagonal matrix. We want to prove that this is a subspace:
Suppose \(A \in S \), with \(S^{-1}AS = \Lambda \) diagonal matrix, and let \(c \) be a scalar. Then,
\[
S^{-1}(cA)S = cS^{-1}AS = c\Lambda
\]
is also a diagonal matrix. Thus, \(cA \) is diagonalized by \(S \), and \(cA \in S \).
Suppose \(A_1, A_2 \in S \), with \(S^{-1}A_1S = \Lambda_1 \) and \(S^{-1}A_2S = \Lambda_2 \) diagonal matrices. Then,
\[
S^{-1}(A_1 + A_2)S = S^{-1}A_1S + S^{-1}A_2S = \Lambda_1 + \Lambda_2
\]
is also a diagonal matrix (the sum of two diagonal matrices is diagonal). Thus, $A_1 + A_2$ is diagonalized by S, and $A_1 + A_2 \in S$.

Alternatively, let v_1, v_2, \ldots, v_n be the column vectors of S. Then S is the set of 4-by-4 matrices that have v_1, v_2, \ldots, v_n as eigenvectors. But the eigenvectors of cA are the same as those of A (prove this!), and if A_1, A_2 have the same eigenvectors, then so does $A_1 + A_2$ (prove this!).

In the case that S is the identity matrix, then $S^{-1}AS = I^{-1}AI = A$ must be a diagonal matrix. Thus, S is the space of 4-by-4 diagonal matrices, which has dimension 4.

Problem 10 Monday 4/9

(a) Give an example of a 3×3 matrix $A \neq 0$ such that $A^2 \neq 0$ but $A^3 = 0$. Find your A find all the eigenvalues and the eigenvectors.

(b) Now, let B be a diagonalizable matrix such that there exists some positive integer k such that $B^k = 0$. Prove that $B = 0$.

(c) Does part (b) contradict part (a)? Explain your answer.

Solution 10

(a) One such example is $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Then, $A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $A^3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. To find the eigenvalues we solve $\det(A - \lambda I) = 0$ for λ.

$$
\det(A - \lambda I) = \det \begin{bmatrix} -\lambda & 1 & 0 \\ 0 & -\lambda & 1 \\ 0 & 0 & -\lambda \end{bmatrix} = -\lambda^3
$$

so $\lambda = 0$ is the only eigenvalue. There is only one eigenvector, $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, which spans the nullspace of $A - 0I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

(b) Now, let B be a diagonalizable matrix such that $B^k = 0$ for some k. Since B is diagonalizable, we can write $\Lambda^k = S^{-1}B^kS = S^{-1}0S = 0$. But because Λ is a diagonal matrix, this implies that $\Lambda = 0$:

$$
\Lambda^k = \begin{bmatrix} \lambda_1^k & & \\ & \ddots & \\ & & \lambda_n^k \end{bmatrix} = 0 \implies \forall i \lambda_i^k = 0 \implies \forall i \lambda_i = 0 \implies \Lambda = 0
$$

(c) No, there is no contradiction, because A in (a) was not diagonalizable (not enough independent eigenvectors)!

5