Problem 1 Wednesday 4/18
Do problem 5 of section 6.3 in your book.

Problem 2 Wednesday 4/18
Do problem 11 of section 6.3 in your book.

Problem 3 Wednesday 4/18
Let
\[A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} . \]
(a) What are the eigenvalues of \(A \)?
(b) How many linearly independent eigenvectors does \(A \) have? Find them.
(c) Find \(e^{At} \).
(d) Find the solution to the differential equation \(\frac{du}{dt} = Au \) when \(u(0) = [1 \quad 1 \quad 1 \quad 1]^T \).

Problem 4 Friday 4/20
Do problem 9 of section 6.4 in your book.

Problem 5 Friday 4/20
Do problem 16 of section 6.4 in your book.

Problem 6 Friday 4/20
Do problem 18 of section 6.4 in your book.

Problem 7 Friday 4/20
Do problem 27 of section 6.4 in your book.

Problem 8 Monday 4/23
Do problem 4 of section 6.5 in your book.

Problem 9 Monday 4/23
Do problem 19 of section 6.5 in your book.

Problem 10 Monday 4/23
Let \(A \) be any \(3 \times 3 \) symmetric matrix. Is it true that for large enough \(t \), \(A + tI \) is positive definite?