18.06 Spring 2008 Outline for Final Exam

- 1. Elimination and solving linear systems
 - how to find particular and complete solutions
 - solvability, uniqueness, rank
 - Cramer's rule
- 2. Inverses
 - how to find them and use them
 - relationship to cofactors
- 3. A = LU and PA = LU decompositions
 - row reduced echelon form R
- 4. Vector spaces and subspaces
 - definitions, examples
- 5. Linear independence and bases
 - span and dimension
- 6. Linear transformations T
 - finding T(x) for x expressed in a basis
 - how to translate into a matrix
- 7. Four subspaces
 - dimensions
 - how to find a basis for each
 - orthogonality properties
- 8. Orthogonality
- 9. Projection matrices
 - how to construct them
 - what they do
 - application to solve least squares
- 10. Orthogonal matrices
 - basic properties
- 11. Gram-Schmidt
 - how to do the Gram-Schmidt process
 - A = QR decomposition

- 12. Determinants
 - definitions and properties
 - specific examples
 - methods: elimination, big formula, cofactors
- 13. Eigenvalues and eigenvectors
 - how to find them
 - relationship to determinant and trace
 - examples and properties
- 14. Diagonalization
 - how to find it
 - how to use it
 - solving differential equations
- 15. Spectral theorem for symmetric matrices
- 16. Positive definite matrices
 - properties and tests
 - why they are important
 - minimizing a quadratic
- 17. Similarity
 - definition
 - relationship to diagonalization
 - Jordan canonical form
- 18. Singular value decomposition
 - how to find it from A'A
 - what information it gives you
- 19. Graphs and networks
 - translating graph questions into linear algebra
 - application to circuits
- 20. Markov matrices
 - steady state and applications
- 21. Complex matrices
 - complex dot products
 - complex analogues of symmetric, orthogonal, etc.

Special matrices: permutation, projection, rank one, symmetric, orthogonal, reflection