18.06 Spring 2008
 Outline for Final Exam

1. Elimination and solving linear systems

- how to find particular and complete solutions
- solvability, uniqueness, rank
- Cramer's rule

2. Inverses

- how to find them and use them
- relationship to cofactors

3. $\mathrm{A}=\mathrm{LU}$ and $\mathrm{PA}=\mathrm{LU}$ decompositions

- row reduced echelon form R

4. Vector spaces and subspaces

- definitions, examples

5. Linear independence and bases

- span and dimension

6. Linear transformations T

- finding $T(x)$ for x expressed in a basis
- how to translate into a matrix

7. Four subspaces

- dimensions
- how to find a basis for each
- orthogonality properties

8. Orthogonality
9. Projection matrices

- how to construct them
- what they do
- application to solve least squares

10. Orthogonal matrices

- basic properties

11. Gram-Schmidt

- how to do the Gram-Schmidt process
- $\mathrm{A}=\mathrm{QR}$ decomposition

12. Determinants

- definitions and properties
- specific examples
- methods: elimination, big formula, cofactors

13. Eigenvalues and eigenvectors

- how to find them
- relationship to determinant and trace
- examples and properties

14. Diagonalization

- how to find it
- how to use it
- solving differential equations

15. Spectral theorem for symmetric matrices
16. Positive definite matrices

- properties and tests
- why they are important
- minimizing a quadratic

17. Similarity

- definition
- relationship to diagonalization
- Jordan canonical form

18. Singular value decomposition

- how to find it from A'A
- what information it gives you

19. Graphs and networks

- translating graph questions into linear algebra
- application to circuits

20. Markov matrices

- steady state and applications

21. Complex matrices

- complex dot products
- complex analogues of symmetric, orthogonal, etc.

Special matrices: permutation, projection, rank one, symmetric, orthogonal, reflection

