 b) Do problem 9 from section 6.1 (pg. 284).

Problem 3: Consider the matrix

\[
M = \begin{bmatrix}
2 & 2 & 1 & 1 \\
-14 & -6 & -9 & -7 \\
-2 & -1 & -2 & -1 \\
8 & 1 & 7 & 4
\end{bmatrix}
\]

a) One eigenvector is \(x_1 = (1, 1, 0, -3)\). What is the corresponding eigenvalue?
 b) Note that \(\det(M) = 0\). Use this information to find another eigenvalue \(\lambda_2\) - how do you know this must be an eigenvalue?
 c) A third eigenvalue is \(\lambda_3 = -1\). Write down (but don’t solve) a linear system that can be solved to find \(x_3\).
 d) What is the fourth eigenvalue? (Hint: use the trace.)

Problem 4: a) Do problem 8 in section 6.2 (pg. 299)
 b) Do problem 18 in section 6.2 (pg. 300)

Problem 5: Here’s an example of an invertible 3 by 3 matrix with only 2 different eigenvalues:

\[
A = \begin{bmatrix}
4 & 1 & -1 \\
2 & 5 & -2 \\
1 & 1 & 2
\end{bmatrix}
\]

a) Find the eigenvalues of \(A\).
 b) Find 3 linearly independent eigenvectors of \(A\).
 c) Is \(A\) diagonalizable? If so, write down a diagonalization \(A = S\Lambda S^{-1}\).

Problem 6: Do problems 15 and 16 in section 6.2 (pg. 300).
Problem 7: Do problem 22 in section 6.2 (pg. 301).

Problem 8: Do problem 7 in section 8.3 (pg. 429).

Problem 9: Do problem 8 in section 8.3 (pg. 429).

Problem 10: A Matlab question: The page rank algorithm in Google is essentially solving an eigenvalue problem for a matrix \(M \) with size in the billions. The method is discussed on pages 358-359 of the textbook; you can find more information in an article by Cleve Moler (MATLAB founder):

www.mathworks.com/company/newsletters/news_notes/clevescorner/oct02_cleve.html

The idea is to start crawling randomly from a website and count the frequency of hitting each site. We create an adjacency matrix that represents the links between websites. By rescaling the columns, we obtain a Markov matrix \(M \) - it tells us the probability of getting to a website by following a random link. If we act by \(M \) repeatedly, vectors will tend to the steady state vector. We’ll call this the evector. The evector represents the total frequency of links to a site, and so sites with larger entries should have higher page ranks. Google finds the evector by crawling randomly through sites.

Model this with a 6 by 6 Markov matrix \(M \) and print the output:

\[
\begin{align*}
W &= \text{ceil}(\text{rand}(6) - .55*\text{ones}(6)) \quad \% \text{create a 1-0 web link matrix } W \\
M &= W*\text{diag}(1./\text{sum}(W)) \quad \% \text{Markov with column sums } = 1 \quad \text{Check sum}(M) \\
[S,L] &= \text{eig}(M) \quad \% S = \text{eigenvector matrix of } M \text{ and } L = \text{eigenvalues} \\
x &= S(:,1); v = x/\text{sum}(x) \quad \% \text{first column is usually evector } v > 0 \text{ for evalue } = 1
\end{align*}
\]

Start from the first website:

\[
u = [1,0,0,0,0,0]’
\]

Now \(Mu \) is the first column of \(M \). Using the column \(Mu \), figure out the probabilities of reaching site 1 to 6.

Define a vector \(f \) that is the fraction of times you hit each of the websites as you continue to crawl. I think \(f \) should approach the evector \(v \) if you act by \(M \) enough times. Does it?