Problem 1: Do problem 1 in section 6.3 (pg. 315) in the book.

Solution (10 points)
We solve a linear system of differential equations by taking
\[u(t) = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t} x_2 \]
where \(\lambda_1, \lambda_2 \) are the eigenvalues, \(x_1, x_2 \) are the eigenvectors, and \(c_1, c_2 \) are constants that satisfy \(c_1 x_1 + c_2 x_2 = u(0) \).

To write down the matrix exponential explicitly, we must find the eigenvalues and eigenvectors of \(A \). Since this \(A \) is diagonal, its eigenvalues are just the diagonal entries, i.e. \(\lambda_1 = 4 \) and \(\lambda_2 = 1 \). The eigenvectors are \(x_1 = (1, 0) \) and \(x_2 = (1, -1) \). Finally, if \(u(0) = (5, -2) \) we must find how to write \(u(0) \) as a linear combination of \(x_1 \) and \(x_2 \). We do this by solving the equation
\[
\begin{bmatrix}
1 & 1 \\
0 & -1
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2
\end{bmatrix}
=
\begin{bmatrix}
5 \\
-2
\end{bmatrix}
\]
We get \(c_2 = 2 \) and \(c_1 = 3 \). So, the final equation is
\[u(t) = 3e^{4t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix} \]

Problem 2: Do problem 3 in section 6.3 (pg. 315).

Solution (10 points)
To linearize this system, we identify \(u \) with the vector \([y, y']^T \), so that we have two equations \(dy/dt = y' \) and \(dy'/dt = y'' = 4y + 5y' \). That is, we can “decouple” the differential equation by adding \(y' \) as a new variable, to obtain the system
\[
\begin{bmatrix}
\frac{dy}{dt} \\
\frac{dy'}{dt}
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 \\
4 & 5
\end{bmatrix}
\begin{bmatrix}
y \\
y'
\end{bmatrix}
\]
We call the coefficient matrix \(A \) as usual. The eigenvalues of \(A \) satisfy the equation \(\lambda^2 - 5\lambda - 4 = 0 \), so the eigenvalues are \(\lambda_1 = \frac{1}{2}(5 + \sqrt{41}) \) and \(\lambda_2 = \frac{1}{2}(5 - \sqrt{41}) \).
Another way to find the eigenvalues is to substitute \(y = e^{\lambda t} \) into the differential equation. We obtain

\[
\lambda^2 e^{\lambda t} = 5\lambda e^{\lambda t} + 4e^{\lambda t}
\]

Dividing by \(e^{\lambda t} \), we find the same relationship \(\lambda^2 - 5\lambda - 4 = 0 \).

Problem 3:

a) Do problem 17 in section 6.3 (pg. 317).

b) Do problem 24 in section 6.3 (pg. 318).

Solution (5+5 points)

a) The infinite series for \(e^{Bt} \) is

\[
e^{Bt} = I + tB + \frac{1}{2}t^2B^2 + \ldots
\]

However, since \(B^2 = 0 \), all the terms of this sequence will be zero except for the first two. Thus

\[
e^{Bt} = I + tB = \begin{bmatrix} 1 & -t \\ 0 & 1 \end{bmatrix}
\]

The derivative is

\[
d(e^{Bt})/dt = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}
\]

Of course, this is the same thing as \(Be^{Bt} \) (just multiply it out).

b) First, recall that \(e^{A+B} = e^Ae^B \) whenever \(AB = BA \). The matrices \(A \) and \(-A \) always commute (both products are \(-A^2 \)), so \(e^{At}e^{-At} = e^0 = I \). Thus \(e^{At} \) is always invertible. You could also check this by multiplying out the power series formally.

Second, we know that \(e^{At} \) has diagonalization \(Se^{At}S^{-1} \). That is, the eigenvalues of \(e^{At} \) are just \(e^{\lambda t} \) for eigenvalues \(\lambda \) of \(A \). However, \(e^{At} \) is never 0, so \(e^{At} \) never has 0 for an eigenvalue, meaning that it is always invertible.

Problem 4:

a) Do problem 4 in section 6.4 (pg. 327).

b) Do problem 10 in section 6.4 (pg. 327).

Solution (5+5 points)

a) We need to diagonalize \(A \); since \(A \) is symmetric, we know that we will be able to pick perpendicular eigenvectors. If we normalize these eigenvectors to length 1, the eigenvector matrix will be orthogonal. \(A \) has eigenvalues given by the equation
\[\lambda^2 - 5\lambda - 50 = 0, \] so \(A \) has eigenvalues \(\lambda_1 = 10 \) and \(\lambda_2 = -5 \). The corresponding eigenvectors of unit length are \(x_1 = \frac{1}{\sqrt{5}}[1, 2]^T \) and \(x_2 = \frac{1}{\sqrt{5}}[-2, 1]^T \). So

\[
Q = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}
\]

b) The flaw here is that \(x^Tx \) is not necessarily a real number (and neither is \(x^TAx \)). We know that \(x^Hx \) is always real, since it is the length of \(x \) squared. But in general \(x^Tx \) is not real - take for example the one-component vector \(x = [1 + i] \).

Problem 5: Do problem 15 in section 6.4 (pg. 328).

Solution (10 points)

We diagonalize

\[
A = \begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix}
\]

The eigenvalues are given by the equation \(\lambda^2 = 0 \), so the only eigenvalue is \(\lambda = 0 \). The eigenvectors are then given by the nullspace of \(A \). We find this using row reduction, just as for real matrices:

\[
\begin{bmatrix} i & 1 \\ 1 & -i \end{bmatrix} \sim \begin{bmatrix} i & 1 \\ 1 & 0 \end{bmatrix}
\]

The nullspace is one dimensional, meaning that every eigenvector is a multiple of \([1, -i]^T\).

Problem 6: Do problem 24 in section 6.4 (pg. 329).

Solution (10 points) (No justifications necessary.)

We start with \(A \). It is definitely invertible. It is orthogonal since \(P^T = P^{-1} \) (both are equal to \(P \)). It is not a projection matrix because \(P^2 \neq P \). It is clearly a permutation matrix. It is diagonalizable because it is symmetric (so that we can find a basis of orthonormal eigenvectors). It is Markov because all entries are non-negative and the columns add to 1.

\(A \) does not have an \(LU \)-decomposition, because we must do a row swap in reducing \(A \). It does have a \(QR \)-decomposition because the columns are linearly independent. It is diagonalizable, so it has an \(SAS^{-1} \) decomposition. Because it is also symmetric, the diagonalization actually gives a \(Q\Lambda Q^T \) decomposition.
B is not invertible (it has rank 1). It is not orthogonal as it has no inverse. It is a projection matrix, because $B^2 = B$ and $B^T = B$ - in fact it projects onto the vector $(1,1,1)$. It is not a permutation matrix. It is diagonalizable because it is symmetric. It is Markov.

B does have an LU-decomposition, since we do not need a row swap. It doesn’t have a QR-decomposition because the columns are dependent. It is diagonalizable and symmetric, so it has both a SAS^{-1} and a QAQ^T factorization.

Problem 7: Do problems 3 and 4 from section 10.2 (pg. 492).

Solution (10 points)

We solve the equation $Az = 0$ by reducing:

$$
\begin{bmatrix}
i & 1 & i \\
1 & i & i
\end{bmatrix} \sim
\begin{bmatrix}
i & 1 & i \\
0 & 2i & i-1
\end{bmatrix} \sim
\begin{bmatrix}
1 & -i & 1 \\
0 & 1 & (i-1)/2i
\end{bmatrix} \sim
\begin{bmatrix}
1 & 0 & (i+1)/2 \\
0 & 1 & (i+1)/2
\end{bmatrix}
$$

This matrix has one free column, so we get one special solution

$$(-i+1)/2, -(i+1)/2, 1)$$

I’ll rescale to use $z = (i + 1, i + 1, -2)$ instead, it doesn’t make any difference. The matrix A^H is

$$A^H = A^T = \begin{bmatrix}
-i & 1 \\
1 & -i \\
-i & -i
\end{bmatrix}$$

Column 1 is $[-i, 1, -i]^T$. To calculate $C_1 \cdot z$, we need to take

$$C_1 \cdot z = C_1^H z = [i, 1, i] \begin{bmatrix}
i + 1 \\
i + 1 \\
-2
\end{bmatrix} = 0$$

Similarly,

$$C_2 \cdot z = C_2^H z = [1, i, i] \begin{bmatrix}
i + 1 \\
i + 1 \\
-2
\end{bmatrix} = 0$$
Of course these equations must be true; by taking the Hermitian of a column of A^H, we are just getting a row of A, and we know that any row of A times a vector in the nullspace gives 0.

The matrix A^T is

$$A^T = \begin{bmatrix} i & 1 \\ 1 & i \\ i & i \end{bmatrix}$$

These columns are not perpendicular to z, for example

$$C_1 \cdot z = C_1^H z = [-i, 1, -i] \begin{bmatrix} i + 1 \\ i + 1 \\ -2 \end{bmatrix} = 2 + 2i$$

Putting all this together, we see that the four fundamental spaces should be $C(A)$, $N(A)$, $C(A^H)$ and $N(A^H)$. They will satisfy the same orthogonal relationships as before: $N(A)$ and $C(A^H)$ are orthogonal complements, and $C(A)$ and $N(A^H)$ are orthogonal complements.

Problem 8: Do problem 15 from section 10.2 (pg. 493).

Solution (10 points)

Since A is Hermitian, we expect it to have real eigenvalues, and a unitary eigenvector matrix U.

A has eigenvalues given by the equation $\lambda^2 - \lambda - 2 = 0$, so we find eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -1$. The corresponding normalized eigenvectors are $x_1 = \frac{1}{\sqrt{6}}[1 - i, 2]^T$ and $x_2 = \frac{1}{\sqrt{3}}[i - 1, 1]^T$. (Another choice in the same direction is $\frac{1}{\sqrt{6}}[-2, 1 + i]^T$, which is more symmetric-looking.) So we obtain

$$\Lambda = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

and

$$U = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 - i & -2 \\ 2 & 1 + i \end{bmatrix}$$

Since the columns of U are (complex) orthogonal unit vectors, U is unitary.

Problem 9: Do problem 6 in section 10.3 (pg. 500).

Solution (10 points)
The Fourier matrix F_4 is

$$F_4 = \begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{bmatrix}$$

We can multiply this out to find

$$F_4^2 = \begin{bmatrix}
4 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 4 & 0 & 0
\end{bmatrix}$$

and

$$F_4^4 = \begin{bmatrix}
16 & 0 & 0 & 0 \\
0 & 16 & 0 & 0 \\
0 & 0 & 16 & 0 \\
0 & 0 & 0 & 16
\end{bmatrix}$$

Problem 10: Do problem 11 in section 10.3 (pg. 501).

Solution (10 points)

Multiplying the two given matrices, we find that the eigenvalues are $\lambda_1 = 1$, $\lambda_2 = i$, $\lambda_3 = i^2 = -1$, and $\lambda_4 = i^3 = -i$.