Your PRINTED name is: ________________________

Please circle your recitation:

1) M 2 2-131 A. Ritter 2-085 2-1192 afr
2) M 2 4-149 A. Tievsky 2-492 3-4093 tievsky
3) M 3 2-131 A. Ritter 2-085 2-1192 afr
4) M 3 2-132 A. Tievsky 2-492 3-4093 tievsky
5) T 11 2-132 J. Yin 2-333 3-7826 jbyin
6) T 11 8-205 A. Pires 2-251 3-7566 arita
7) T 12 2-132 J. Yin 2-333 3-7826 jbyin
8) T 12 8-205 A. Pires 2-251 3-7566 arita
9) T 12 26-142 P. Buchak 2-093 3-1198 pmb
10) T 1 2-132 B. Lehmann 2-089 3-1195 lehmann
11) T 1 26-142 P. Buchak 2-093 3-1198 pmb
12) T 1 26-168 P. McNamara 2-314 4-1459 petermc
13) T 2 2-132 B. Lehmann 2-089 2-1195 lehmann
14) T 2 26-168 P. McNamara 2-314 4-1459 petermc
1 (18 pts.) Start with an invertible 3 by 3 matrix A. Construct B by subtracting 4 times row 1 of A from row 3. **How do you find B^{-1} from A^{-1}?** You can answer in matrix notation, but *you must also answer in words*—what happens to the columns and rows?
2 (24 pts.) Elimination on A leads to U:

$$Ax = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad \text{leads to} \quad Ux = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

(a) Factor the first matrix A into $A = LU$ and also into $A = LDL^T$.

(b) Find the inverse of A by Gauss-Jordan elimination on $AA^{-1} = I$ or by inverting L and D and L^T.

(c) If D is diagonal, show that LDL^T is a symmetric matrix for every matrix L (square or rectangular).
3 (30 pts.) Suppose the nonzero vectors a_1, a_2, a_3 point in different directions in \mathbb{R}^3 but
\[3a_1 + 2a_2 + a_3 = \text{zero vector} .\]
The matrix A has those vectors a_1, a_2, a_3 in its columns.

(a) Describe the nullspace of A (all x with $Ax = 0$).

(b) Which are the pivot columns of A?

(c) I want to show that all 3 by 3 matrices with
\[\text{(\star)} \quad 3(\text{column 1}) + 2(\text{column 2}) + (\text{column 3}) = \text{zero vector} \]
form a subspace S of the space M of 3 by 3 matrices. Now the zero matrix is certainly included.

Suppose B and C are matrices whose columns have this property (\star).

To show that we have a subspace, we have to prove that every linear combination of B and C (finish sentence).

Go ahead and prove that.
This page intentionally blank.
4 (28 pts.) Start with this 2 by 4 matrix:

\[
A = \begin{bmatrix}
2 & 3 & 1 & -1 \\
6 & 9 & 3 & -2
\end{bmatrix}
\]

(a) Find all special solutions to \(Ax = 0\) and describe the nullspace of \(A\).

(b) Find the complete solution—meaning all solutions \((x_1, x_2, x_3, x_4)\)—to

\[
Ax = \begin{bmatrix}
2x_1 + 3x_2 + x_3 - x_4 \\
6x_1 + 9x_2 + 3x_3 - 2x_4
\end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.
\]

(c) When an \(m\) by \(n\) matrix \(A\) has rank \(r = m\), the system \(Ax = b\) can be solved for which \(b\) (best answer)? How many special solutions to \(Ax = 0\)?
This page intentionally blank.