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1 Introduction
So far in the eigenproblem portion of 18.06, our strategy
has been simple: find the eigenvalues λi and the corre-
sponding eigenvectors xi of a square matrix A, expand
any vector of interest u in the basis of these eigenvectors
(u = c1x1 + · · ·+cnxn), and then any operation with A can
be turned into the corresponding operation with λi acting
on each eigenvector. So, Ak becomes λ k

i , eAt becomes eλit ,
and so on. But this relied on one key assumption: we re-
quire the n×n matrix A to have a basis of n independent
eigenvectors. We call such a matrix A diagonalizable.

Many important cases are always diagonalizable: ma-
trices with n distinct eigenvalues λi, real symmetric or or-
thogonal matrices, and complex Hermitian or unitary ma-
trices. But there are rare cases where A does not have a
complete basis of n eigenvectors: such matrices are called
defective. For example, consider the matrix

A =
(

1 1
0 1

)
.

This matrix has a characteristic polynomial λ 2− 2λ + 1,
with a repeated root (a single eigenvalue) λ1 = 1. (Equiv-
alently, since A is upper triangular, we can read the de-
terminant of A− λ I, and hence the eigenvalues, off the
diagonal.) However, it only has a single indepenent eigen-
vector, because

A− I =
(

0 1
0 0

)
is obviously rank 1, and has a one-dimensional nullspace
spanned by x1 = (1,0).

Defective matrices arise rarely in practice, and usually
only when one arranges for them intentionally, so we have

not worried about them up to now. But it is important to
have some idea of what happens when you have a defec-
tive matrix. Partially for computational purposes, but also
to understand conceptually what is possible. For example,
what will be the result of

Ak
(

1
2

)
or eAt

(
1
2

)

for the defective matrix A above, since (1,2) is not in the
span of the (single) eigenvector of A? For diagonalizable
matrices, this would grow as λ k or eλ t , respectively, but
what about defective matrices?

The textbook (Intro. to Linear Algebra, 4th ed. by
Strang) covers the defective case only briefly, in section
6.6, with something called the Jordan form of the ma-
trix, a generalization of diagonalization. In that short sec-
tion, however, the Jordan form falls down out of the sky,
and you don’t really learn where it comes from or what
its consequences are. In this section, we will take a dif-
ferent tack. For a diagonalizable matrix, the fundamen-
tal vectors are the eigenvectors, which are useful in their
own right and give the diagonalization of the matrix as a
side-effect. For a defective matrix, to get a complete basis
we need to supplement the eigenvectors with something
called generalized eigenvectors. Generalized eigenvec-
tors are useful in their own right, just like eigenvectors,
and also give the Jordan form as a side effect. Here, how-
ever, we’ll focus on defining, obtaining, and using the
generalized eigenvectors, and not so much on the Jordan
form.
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2 Defining generalized eigenvectors
In the example above, we had a 2× 2 matrix A but only
a single eigenvector x1 = (1,0). We need another vector
to get a basis for R2. Of course, we could pick another
vector at random, as long as it is independent of x1, but
we’d like it to have something to do with A, in order to
help us with computations just like eigenvectors. The key
thing is to look at A−I above, and to notice that the one of
the columns is equal to x1: the vector x1 is in C(A− I), so
we can find a new generalized eigenvector x(2)

1 satisfying

(A− I)x(2)
1 = x1, x(2)

1 ⊥ x1.

Notice that, since x1 ∈ N(A− I), we can add any multiple
of x1 to x(2)

1 and still have a solution, so we can use Gram-
Schmidt to get a unique solution x(2)

1 perpendicular to x1.
This particular 2× 2 equation is easy enough for us to
solve by inspection, obtaining x(2)

1 = (0,1). Now we have
a nice orthonormal basis for R2, and our basis has some
simple relationship to A!

Before we talk about how to use these generalized
eigenvectors, let’s give a more general definition. Sup-
pose that λi is an eigenvalue of A corresponding to a re-
peated root of det(A−λiI), but with only a single (ordi-
nary) eigenvector xi, satisfying, as usual:

(A−λiI)xi = 0.

If λi is a double root, we will need a second vector to
complete our basis. Remarkably,1 it turns out to always
be the case for a double root λi that xi is in C(A− λiI),
just as in the example above. Hence, we can always find
a unique second solution x(2)

i satisfying:

(A−λiI)x
(2)
i = xi, x(2)

i ⊥ xi .

Again, we can choose x(2)
i to be perpendicular to x(1)

i via
Gram-Schmidt—this is not strictly necessary, but gives a
convenient orthogonal basis. (That is, the complete solu-
tion is always of the form xp +cxi, a particular solution xp
plus any multiple of the nullspace basis xi. If we choose
c = −xT

i xp/xT
i xi we get the unique orthogonal solution

x(2)
i .) We call x(2)

i a generalized eigenvector of A.
1This fact is proved in any number of advanced textbooks on linear

algebra; I like Linear Algebra by P. D. Lax.

2.1 More than double roots
If we wanted to be more notationally consistent, we could
use x(1)

i instead of xi. If λi is a triple root, we would
find a third vector x(3)

i perpendicular to x(1,2)
i by requir-

ing (A− λiI)x
(3)
i = x(2)

i , and so on. In general, if λi is
an m-times repeated root, then we will always be able to
find an orthogonal sequence of generalized eigenvectors
x( j)

i for j = 2 . . .m satisfying (A− λiI)x
( j)
i = x( j−1)

i and
(A−λiI)x

(1)
i = 0. Even more generally, you might have

cases with e.g. a triple root and two ordinary eigenvec-
tors, where you need only one generalized eigenvector,
or an m-times repeated root with ` > 1 eigenvectors and
m−` generalized eigenvectors. However, cases with more
than a double root are extremely rare in practice. Defec-
tive matrices are rare enough to begin with, so here we’ll
stick with the most common defective matrix, one with
a double root λi: hence, one ordinary eigenvector xi and
one generalized eigenvector x(2)

i .

3 Using generalized eigenvectors
Using an eigenvector xi is easy: multiplying by A is just
like multiplying by λi. But how do we use a generalized
eigenvector x(2)

i ? The key is in the definition above. It
immediately tells us that

Ax(2)
i = λix

(2)
i +xi.

It will turn out that this has a simple consequence for more
complicated expressions like Ak or eAt , but that’s probably
not obvious yet. Let’s try multiplying by A2:

A2x(2)
i = A(Ax(2)

i ) = A(λix
(2)
i +xi) = λi(λix

(2)
i +xi)+λixi

= λ
2
i x(2)

i +2λixi

and then try A3:

A3x(2)
i = A(A2x(2)

i ) = A(λ 2
i x(2)

i +2λixi) = λ
2
i (λix

(2)
i +xi)+2λ

2
i xi

= λ
3
i x(2)

i +3λ
2
i xi.

From this, it’s not hard to see the general pattern (which
can be formally proved by induction):

Akx(2)
i = λ

k
i x(2)

i + kλ
k−1
i xi .
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Notice that the coefficient in the second term is exactly
d

dλi
(λi)k. This is the clue we need to get the general for-

mula to apply any function f (A) of the matrix A to the
eigenvector and the generalized eigenvector:

f (A)xi = f (λi)xi,

f (A)x(2)
i = f (λi)x

(2)
i + f ′(λi)xi .

Multiplying by a function of the matrix multiplies x(2)
i by

the same function of the eigenvalue, just as for an eigen-
vector, but also adds a term multiplying xi by the deriva-
tive f ′(λi). So, for example:

eAtx(2)
i = eλitx(2)

i + teλitxi .

We can show this explicitly by considering what happens
when we apply our formula for Ak in the Taylor series for
eAt :

eAtx(2)
i =

∞

∑
k=0

Aktk

k!
x(2)

i =
∞

∑
k=0

tk

k!
(λ k

i x(2)
i + kλ

k−1
i xi)

=
∞

∑
k=0

(λit)k

k!
x(2)

i + t
∞

∑
k=1

(λit)k−1

(k−1)!
xi = eλitx(2)

i + teλitxi.

In general, that’s how we show the formula for f (A)
above: we Taylor expand each term, and the Ak formula
means that each term in the Taylor expansion has corre-
sponding term multiplying x(2)

i and a derivative term mul-
tiplying xi.

3.1 More than double roots

In the rare case of two generalized eigenvectors from
a triple root, you will have a generalized eigenvector
x(3)

i and get a f (A)x(3)
i = f (λ )x(3)

i + f ′(λ )x(2)
i + f ′′(λ )xi,

where the f ′′ term will give you k(k− 1)λ k−2
i and t2eλit

for Ak and eAt respectively. A quadruple root with one
eigenvector and three generalized eigenvectors will give
you f ′′′ terms (that is, k3 and t3 terms), and so on. The
theory is quite pretty, but doesn’t arise often in practice so
I will skip it; it is straightforward to work it out on your
own if you are interested.

3.2 Example

Let’s try this for our example 2×2 matrix A =
(

1 1
0 1

)
from above, which has an eigenvector x1 = (1,0) and
a generalized eigenvector x(2)

1 = (0,1) for an eigenvalue
λ1 = 1. Suppose we want to comput Aku0 and eAtu0 for
u0 = (1,2). As usual, our first step is to write u0 in the ba-
sis of the eigenvectors...except that now we also include
the generalized eigenvectors to get a complete basis:

u0 =
(

1
2

)
= x1 +2x(2)

1 .

Now, computing Aku0 is easy, from our formula above:

Aku0 = Akx1 +2Akx(2)
1 = λ

k
1 x1 +2λ

k
1 x(2)

1 +2kλ
k−1
1 x1

= 1k
(

1
2

)
+2k 1k−1

(
1
0

)
=
(

1+2k
2

)
.

For example, this is the solution to the recurrence uk+1 =
Auk. Even though A has only an eigenvalue |λ1|= 1≤ 1,
the solution still blows up, but it blows up linearly with k
instead of exponentially.

Consider instead eAtu0, which is the solution to the
system of ODEs du(t)

dt = Au(t) with the initial condition
u(0) = u0. In this case, we get:

eAtu0 = eAtx1 +2eAtx(2)
1 = eλ1tx1 +2eλ1tx(2)

1 +2teλ1tx1

= et
(

1
2

)
+2tet

(
1
0

)
=
(

1+2t
2

)
et .

In this case, the solution blows up exponentially since
λ1 = 1 > 0, but we have an additional term that blows
up as an exponential multiplied by t.

Those of you who have taken 18.03 are probably fa-
miliar with these terms multiplied by t in the case of a
repeated root. In 18.03, it is presented simply as a guess
for the solution that turns out to work, but here we see that
it is part of a more general pattern of generalized eigen-
vectors for defective matrices.
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4 The Jordan form
For a diagonalizable matrix A, we made a matrix S out
of the eigenvectors, and saw that multiplying by A was
equivalent to multiplying by SΛS−1 where Λ = S−1AS is
the diagonal matrix of eigenvalues, the diagonalization of
A. Equivalently, AS = ΛS: A multiplies each column of S
by the corresponding eigenvalue. Now, we will do exactly
the same steps for a defective matrix A, using the basis of
eigenvectors and generalized eigenvectors, and obtain the
Jordan form J instead of Λ.

Let’s consider a simple case of a 4× 4 first, in which
there is only one repeated root λ2 with an eigenvector
x2 and a generalized eigenvector x(2)

2 , and the other two
eigenvalues λ1 and λ3 are distinct with independent eigen-
vectors x1 and x3. Form a matrix M = (x1,x2,x

(2)
2 ,x3)

from this basis of four vectors (3 eigenvectors and 1
generalized eigenvector). Now, consider what happends
when we multiply A by M:

AM = (λ1x1,λ2x2,λ2x(2)
2 +x2,λ3x3).

= M


λ1

λ2 1
λ2

λ3

= MJ.

That is, A = MJM−1 where J is almost diagonal: it has
λ ′s along the diagonal, but it also has 1’s above the diag-
onal for the columns corresponding to generalized eigen-
vectors. This is exactly the Jordan form of the matrix A.
J, of course, has the same eigenvalues as A since A and J
are similar, but J is much simpler than A.

The generalization of this, when you perhaps have
more than one repeated root, and perhaps the multiplicity
of the root is greater than 2, is fairly obvious, and leads
immediately to the formula given without proof in sec-
tion 6.6 of the textbook. What I want to emphasize here,
however, is not so much the formal theorem that a Jordan
form exists, but how to use it via the generalized eigen-
vectors: in particular, that generalized eigenvectors give
us linearly growing terms kλ k−1 and teλ t when we multi-
ply by Ak and eAt , respectively.

4


