18.06 Problem Set 4

Due Wednesday, 11 March 2008 at 4pm in 2-106.

1. A is an $m \times n$ matrix of rank r. Suppose there are right-hand-sides b for which $Ax = b$ has no solution.
 (a) What are all the inequalities ($<$ or \leq) that must be true between m, n, and r?
 (b) $A^T y = 0$ has solutions other than $y = 0$. Why must this be true?

2. A is an $m \times n$ matrix of rank r. Which of the four fundamental subspaces are the same for:
 (a) A and $(A A)$
 (b) $(A A)$ and $(A A A A)$
 Explain why all three matrices A, $(A A)$, and $(A A A A)$ must have the same rank r.

3. Find a basis for each of the four subspaces for
 $$ A = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix} $$

4. True or false (give a reason if true, or a counterexample if false):
 (a) A and A^T have the same number of pivots
 (b) A and A^T have the same left nullspace
 (c) If the $C(A) = C(A^T)$, then $A = A^T$.
 (d) If $A^T = -A$, then the row space of A is the same as the column space of A.

5. Use the Matlab command $A = \text{rand}(10,5)$; to make a random 10×5 matrix A, and $B = \text{rand}(5,9)$ to make a random 5×9 matrix B. Then use the command $[R, p] = \text{rref}(A*B)$; to find the row-reduced echelon form R and a list p of the pivot columns. Using this information, give bases for the nullspace, column space, and row space of AB.

6. Explain why the following statement must be true: if a subspace S is contained in another subspace V, then the orthogonal complement V^\perp is contained in the orthogonal complement S^\perp.

7. If $A^T A x = 0$ then $A x = 0$. Reason: $A^T A x = 0$ means that $A x$ in the nullspace of ________. $A x$ is also in the ________ space of A. These two spaces are ________, so their only intersection is $A x = 0$. Thus, $A^T A$ has the same nullspace as A. (We derive this in another way in class.)

8. Suppose you have two matrices V and W such that $C(V)$ and $C(W)$ are orthogonal subspaces. What is $V^T W$?

9. Suppose L is a one-dimensional subspace (a line through the origin) in \mathbb{R}^3. Its orthogonal complement L^\perp is the ________ perpendicular to L. Then $(L^\perp)^\perp$ is a ________ perpendicular to L^\perp, and in fact $(L^\perp)^\perp$ is the same as ________.

10. Let N be a matrix whose columns are a basis for the nullspace of A. Then the nullspace of N^T is the ________ space of A.

1
11. Let A be the matrix

$$A = \begin{pmatrix} 3 & 6 & 6 \\ 4 & 8 & 8 \end{pmatrix}.$$

(a) Find the projection matrix P_C onto $C(A)$.
(b) Find the projection matrix P_R onto the row space of A.
(c) Compute $P_C A P_R$. Explain your result.
(d) For any matrix A (not necessarily the one above), with P_C and P_R defined as the projection matrices onto A’s column and row space respectively, conclude that you would get $P_C A P_R =$

12. Find the projection matrix P onto the plane $x + 2y - z = 0$ in two ways:

(a) Choose two vectors in the plane and make them the columns of a matrix A. The plane is the column space. Then compute $P = A(A^T A)^{-1} A^T$.
(b) Write a vector e that is perpendicular to that plane. Compute the matrix $Q = ee^T / e^T e$ that projects onto the e direction. Then compute $P = I - Q$.

13. The nullspace of A^T is ____________ to the column space $C(A)$, so if $A^T b = 0$ then the projection of b onto $C(A)$ should be $p =$ ____________. Check that Pb gives this answer, where P is the projection matrix $P = A(A^T A)^{-1} A^T$.

14. Explain why one must have $P^2 = P$, from the definition of the projection matrix P onto the column space of a matrix A (if we take a vector b and project it to the column space to get Pb, then project it again, we must get ____________). Check explicitly that this is true from the formula $P = A(A^T A)^{-1} A^T$.

2