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The Fourier sine series for a function f (x) defined on x ∈ [0,1] writes f (x) as

f (x) =
∞

∑
n=1

bn sin(nπx)

for some coefficients bn. The key point is that these functions are orthogonal, given the
“dot product” f (x) ·g(x) =

∫ 1
0 f (x)g(x)dx. It is a simple calculus exercise to show that

the dot product of two sine functions is sin(nπx) · sin(mπx) =
∫ 1

0 sin(nπx)sin(mπx) =∫ 1
0 [cos((n−m)πx)−cos((n+m)πx)]/2, which equals 0 if n 6= m and 1/2 if n = m. [If

we divide the sin(nπx) functions by
√

1/2, they are orthonormal.] Because of orthog-
onality, we can compute the bn very simply: for any given m, we integrate both sides
against sin(mπx). In the summation, this gives zero for n 6= m, and

∫ 1
0 sin2(mπx) = 1/2

for n = m, resulting in the equation

bm = 2
∫ 1

0
f (x) sin(mπx)dx.

Fourier claimed (without proof) in 1822 that any function f (x) can be expanded in
terms of sines in this way, even discontinuous function! That is, these sine functions
form an orthogonal basis for “all” functions! This turned out to be false for various
badly behaved f (x), and controversy over the exact conditions for convergence of the
Fourier series lasted for well over a century, until the question was finally settled by
Carleson (1966) and Hunt (1968): any function f (x) where

∫
| f (x)|pdx is finite for

some p > 1 has a Fourier series that converges almost everywhere to f (x) [except at
isolated points]. At points where f (x) has a jump discontinuity, the Fourier series
converges to the midpoint of the jump. So, as long as one does not care about crazy di-
vergent functions or the function value exactly at points of discontinuity (which usually
has no physical significance), Fourier’s remarkable claim is essentially true.

To illustrate the convergence of the sine series, let’s consider a couple of examples.
First, consider the function f (x) = 1, which seems impossible to expand in sines be-
cause it is not zero at the endpoints, but nevertheless it works...if you don’t care about
the value exactly at x = 0 or x = 1. From the formula above, we obtain

bm = 2
∫ 1

0
sin(nπx)dx = − 2

nπ
cos(nπx)
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Figure 1: Fourier sine series for f (x) = 1, truncated to a finite number of terms (from
1 to 32), showing that the series indeed converges everywhere to f (x), except exactly
at the endpoints, as the number of terms is increased.

and thus
f (x) = 1 =

4
π

sin(πx)+
4

3π
sin(3πx)+

4
5π

sin(5πx)+ · · · .

This is plotted for 1, 2, 4, 8, 16, and 32 terms in figure. 1, showing that it does in-
deed approach f (x) = 1 almost everywhere. There is some oscillation at the point of
discontinuity, which is known as a Gibb’s phenomenon.

Note that the n even coefficents were zero. The reason for this is simple: for even
n, the sin(nπx) function is odd around the midpoint x = 1/2, whereas f (x) = 1 is even
around the midpoint, so the integral of their product is zero.

Now, let’s try another example, one for which the endpoints are zero and there
are no discontinuities, but there is a discontinuous slope: f (x) = 1

2 − |x−
1
2 |, which

looks like a triangle when plotted. Again, this function is even around the mid-point
x = 1/2, so only the odd-n coefficients will be non-zero. For these coefficients (since
the integrand is symmetric around x = 1/2), we only need to do the integral over half
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Figure 2: Fourier sine series (blue lines) for the triangle function f (x) = 1
2 − |x−

1
2 |

(dashed black lines), truncated to a finite number of terms (from 1 to 32), showing that
the series indeed converges everywhere to f (x).

the region:

bm odd = 2
∫ 1

0
f (x) sin(mπx)dx = 4

∫ 1/2

0
xsin(mπx)dx =

4
(mπ)2 (−1)

m−1
2 ,

where for the last step one must do some tedious integration by parts, and thus

f (x) =
4

π2 sin(πx)− 4
(3π)2 sin(3πx)+

4
(5π)2 sin(5πx)+ · · · .

This is plotted in figure. 2 for 1 to 8 terms—it converges faster than for f (x) = 1
because there are no discontinuities in the function to match, only discontinuities in
the derivative.
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