Problem Set 3 Solutions:

Section 6.4

6.

We need to the columns of Q to be an	n orthonormal basis of eigenvectors of A.	This gives eight choices:
$\begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}, \begin{bmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}, \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & -\frac{4}{5} \end{bmatrix}$	$\begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}, \begin{bmatrix} 4\\ -\frac{3}{5} & \frac{3}{5} \\ -\frac{3}{5} & \frac{4}{5} \end{bmatrix}, \begin{bmatrix} 4\\ \frac{5}{5} \\ -\frac{3}{5} & \frac{4}{5} \end{bmatrix}, \begin{bmatrix} 4\\ \frac{5}{5} \\ -\frac{3}{5} \end{bmatrix}$	$\begin{bmatrix} -\frac{3}{5} \\ -\frac{4}{5} \end{bmatrix}, \begin{bmatrix} -\frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{bmatrix}, \begin{bmatrix} -\frac{4}{5} & -\frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5} \end{bmatrix}$

10. If x is not real then even if A is real there is not reason to expect that $x^T x$ or $x^T A x$ is real, so this "proof" makes no sense.

14. This matrix M is skew-symmetric and also orthogonal. Thus $M^T M = -M^2 = I$ so the eigenvalues of M can only be i and -i. The sum of the eigenvalues of M is the trace of M so the eigenvalues of M must be -i, -i, i, and i.

15. The characteristic polynomial $det(A - \lambda I)$ of A is $(\lambda - i)(\lambda + i) - 1 = \lambda^2$ so 0 is the only eigenvalue of A and it has algebraic multiplicity 2.

Solving $A\begin{bmatrix} x_1\\ x_2 \end{bmatrix} = 0$ gives that $x_1 - ix_2 = 0$, so the solutions have the form $c\begin{bmatrix} i\\ 1 \end{bmatrix}$ The eigenvalue 0 of A has geometric multiplicity 1 so A is not diagonalizable.

23. A is an invertible, orthogonal, permutation, diagonalizable, and Maarkov matrix. A does not have an LU factorization but it does have a QR, $S\Lambda S^{-1}$, and $Q\Lambda Q^{-1}$ factorization. B is a projection, diagonalizable, and Markov matrix. It has an LU, QR, $S\Lambda S^{-1}$, and $Q\Lambda Q^{-1}$ factorization.

Note: The book says that B does not have an LU or QR factorization, possibly because it wants U and R to be invertible for these factorizations, although I do not see why this is required. We can write

B =	$\left[\begin{array}{c}1\\1\\1\end{array}\right]$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$		$\begin{bmatrix} \frac{1}{3} \\ 0 \\ 0 \end{bmatrix}$		$ \begin{bmatrix} \frac{1}{3} \\ 0 \\ 0 \end{bmatrix} $	and $B =$	$\begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$	$\begin{array}{c} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{array}$	$ \begin{array}{c} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \end{array} $		$\begin{array}{c} \frac{1}{\sqrt{3}} \\ 0 \\ 0 \end{array}$	$\begin{array}{c} \frac{1}{\sqrt{3}} \\ 0 \\ 0 \end{array}$	$\begin{array}{c} \frac{1}{\sqrt{3}} \\ 0 \\ 0 \end{array}$	
-----	---	--	--	--	---	--	---	-----------	--	---	--	--	---	---	---	--

24. $A = Q\Lambda Q^{-1}$ is possible when b = 1 and A is symmetric. $A = S\Lambda S^{-1}$ is impossible when b = -1. This means the characteristic polynomial of A is $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$ but $A \neq I$. A is not invertible when b = 0.

Section 6.5

2.

 A_1 has negative determinant, so it fails the test. Taking $x = \begin{bmatrix} 7 \\ -6 \end{bmatrix}$, $x^T A_1 x < 0$.

 $(A_2)_{11} < 0$, so A_2 fails the test. $(A_3)_{11} > 0$ and $|A_3| = 0$, so A_3 is positive semidefinite but not positive definite. $(A_4)_{11} > 0$ and $|A_4| = 1$, so A_4 is positive definite and has two positive eigenvalues.

16. $x^T A x < 0$ when $(x_1, x_2, x_3) = (1, -5, 0)$ Note: (0, 1, 0) will probably be the most common correct answer.

21. The conditions on the upper left determininants of A are: 1. s > 02. $s^2 - 16 > 0$ 3. $s(s^2 - 16) + 4(-4s - 16) - 4(16 + 4s) = s^3 - 48s - 128 > 0$ These three conditions give s > 0, s > 4, and s > 8 respectively. Thus we need s > 8 The conditions on the upper left determinants of B are:

1. t > 0

2. $t^2 - 9 > 0$ 3. $t(t^2 - 16) - 3(3t) = t^3 - 25t > 0$

These three conditions give t > 0, t > 3, and t > 5 respectively. Thus we need t > 5

Note: The problem can also be answered by saying that s, t must be bigger than -1 times the smallest eigenvalue of the matrices A and B respectively.

28. a. 10 b. 2,5

c. $\begin{bmatrix} \cos(\Theta) \\ \sin(\Theta) \end{bmatrix}$, $\begin{bmatrix} -\sin(\Theta) \\ \cos(\Theta) \end{bmatrix}$ d. *A* is of the form $Q\Lambda Q^{-1}$ where *Q* is orthogonal and Λ is diagonal, so *A* is symmetric. *A* has only positive eigenvalues, so it is positive definite.

35. If $x \neq 0$ then $Ax \neq 0$ so $x^T A^T C Ax = (Ax)^T C(Ax) > 0$ as C is positive definite. Thus $A^T C A$ is positive definite, as claimed.

Section 6.3, Problem 30. (non-MATLAB solution)

The inverse of the left matrix is $\frac{1}{1+(\frac{\Delta t}{2})^2} \begin{bmatrix} 1 & \frac{\Delta t}{2} \\ -\frac{\Delta t}{2} & 1 \end{bmatrix}$

We have
$$A = \frac{1}{1 + (\frac{\Delta t}{2})^2} \begin{bmatrix} 1 & \frac{\Delta t}{2} \\ -\frac{\Delta t}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{\Delta t}{2} \\ -\frac{\Delta t}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{\Delta t}{2} \\ -\frac{\Delta t}{2} & 1 \end{bmatrix} = \begin{bmatrix} \frac{1 - (\frac{\Delta t}{2})^2}{1 + (\frac{\Delta t}{2})^2} & \frac{\Delta t}{1 + (\frac{\Delta t}{2})^2} \\ -\frac{\Delta t}{1 + (\frac{\Delta t}{2})^2} & \frac{1 - (\frac{\Delta t}{2})^2}{1 + (\frac{\Delta t}{2})^2} \end{bmatrix}$$

The columns of A are clearly orthogonal. To see that they have unit norm, note that

$$\begin{split} &(\frac{1-(\frac{\Delta t}{2})^2}{1+(\frac{\Delta t}{2})^2})^2 + (\frac{\Delta t}{1+(\frac{\Delta t}{2})^2})^2 = \frac{1-\frac{(\Delta t)^2}{2}+(\frac{\Delta t}{2})^4+(\Delta t)^2}{1+\frac{(\Delta t)^2}{2}+(\frac{\Delta t}{2})^4} = 1\\ &\text{If } B^T = -B \text{ then if } A = (I-B)^{-1}(I+B), A^T = (I+B)^T((I-B)^T)^{-1} = (I-B)(I+B)^{-1}\\ &\text{Then } AA^T = (I-B)^{-1}(I+B)(I-B)(I+B)^{-1} = (I-B)^{-1}(I-B^2)(I+B)^{-1} = (I-B)^{-1}(I-B)(I+B)^{-1} = (I-B)^{-1}(I-B)(I+B)^{-1} = I\\ &(I-B)^{-1}(I-B)(I+B)(I+B)^{-1} = I\\ &\text{b.} \end{split}$$

A is the matrix corresponding to clockwise rotation by $\Theta = \sin^{-1}(\frac{\Delta t}{1+(\frac{\Delta t}{2})^2}) \approx .1957$ Rotating (1,0) clockwise by 32Θ gives approximately (.9998, .0201)

Section 8.1, problem 11. (setup) This differential equation has the exact solution $u(x) = c_1 + \frac{x}{10} + c_2 e^{10x}$ Solving u(0) = u(1) = 0 gives $c_1 + c_2 = 0$, $c_1 + \frac{1}{10} + e^{10}c_2 = 0$ $\begin{bmatrix} 1 & 1 \\ 1 & e^{10} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\frac{1}{10} \end{bmatrix}$ $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{e^{10}-1} \begin{bmatrix} e^{10} & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{1}{10} \end{bmatrix} = \begin{bmatrix} \frac{1}{10(e^{10}-1)} \\ -\frac{1}{10(e^{10}-1)} \end{bmatrix}$ $u(x) = \frac{1}{10(e^{10}-1)} + \frac{x}{10} - \frac{e^{10x}}{10(e^{10}-1)}$

For the numerical approximation, let $u_n = u(n\Delta x)$. Then our condition says that $u_0 = u_8 = 0$.

where i = 1 for the forward differences, 2 for the centered differences, and 3 for the backwards differences.