Problem Set 3 Solutions:

Section 6.4

6.

We need to the columns of Q to be an orthonormal basis of eigenvectors of A. This gives eight choices:
$\left[\begin{array}{cc}\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5}\end{array}\right],\left[\begin{array}{cc}\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & \frac{3}{5}\end{array}\right],\left[\begin{array}{cc}-\frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & -\frac{3}{5}\end{array}\right],\left[\begin{array}{cc}-\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5}\end{array}\right],\left[\begin{array}{cc}\frac{4}{5} & \frac{3}{5} \\ -\frac{3}{5} & \frac{4}{5}\end{array}\right],\left[\begin{array}{cc}\frac{4}{5} & -\frac{3}{5} \\ -\frac{3}{5} & -\frac{4}{5}\end{array}\right],\left[\begin{array}{cc}-\frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{4}{5}\end{array}\right],\left[\begin{array}{cc}-\frac{4}{5} & -\frac{3}{5} \\ \frac{3}{5} & -\frac{4}{5}\end{array}\right]$
10. If x is not real then even if A is real there is not reason to expect that $x^{T} x$ or $x^{T} A x$ is real, so this "proof" makes no sense.
14. This matrix M is skew-symmetric and also orthogonal. Thus $M^{T} M=-M^{2}=I$ so the eigenvalues of M can only be i and $-i$. The sum of the eigenvalues of M is the trace of M so the eigenvalues of M must be $-i,-i, i$, and i.
15. The characteristic polynomial $\operatorname{det}(A-\lambda I)$ of A is $(\lambda-i)(\lambda+i)-1=\lambda^{2}$ so 0 is the only eigenvalue of A and it has algebraic multiplicity 2 .
Solving $A\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=0$ gives that $x_{1}-i x_{2}=0$, so the solutions have the form $c\left[\begin{array}{l}i \\ 1\end{array}\right]$
The eigenvalue 0 of A has geometric multiplicity 1 so A is not diagonalizable.
23. A is an invertible, orthogonal, permutation, diagonalizable, and Maarkov matrix. A does not have an $L U$ factorization but it does have a $Q R, S \Lambda S^{-1}$, and $Q \Lambda Q^{-1}$ factorization.
B is a projection, diagonalizable, and Markov matrix. It has an $L U, Q R, S \Lambda S^{-1}$, and $Q \Lambda Q^{-1}$ factorization.
Note: The book says that B does not have an $L U$ or $Q R$ factorization, possibly because it wants U and R to be invertible for these factorizations, although I do not see why this is required. We can write
$B=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}\end{array}\right]\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
24. $A=Q \Lambda Q^{-1}$ is possible when $b=1$ and A is symmetric. $A=S \Lambda S^{-1}$ is impossible when $b=-1$. This means the characteristic polynomial of A is $\lambda^{2}-2 \lambda+1=(\lambda-1)^{2}$ but $A \neq I . A$ is not invertible when $b=0$.

Section 6.5
2.
A_{1} has negative determinant, so it fails the test. Taking $x=\left[\begin{array}{c}7 \\ -6\end{array}\right], x^{T} A_{1} x<0$.
$\left(A_{2}\right)_{11}<0$, so A_{2} fails the test.
$\left(A_{3}\right)_{11}>0$ and $\left|A_{3}\right|=0$, so A_{3} is positive semidefinite but not positive definite.
$\left(A_{4}\right)_{11}>0$ and $\left|A_{4}\right|=1$, so A_{4} is positive definite and has two positive eigenvalues.
16. $x^{T} A x<0$ when $\left(x_{1}, x_{2}, x_{3}\right)=(1,-5,0)$

Note: $(0,1,0)$ will probably be the most common correct answer.
21. The conditions on the upper left determininants of A are:

1. $s>0$
2. $s^{2}-16>0$
3. $s\left(s^{2}-16\right)+4(-4 s-16)-4(16+4 s)=s^{3}-48 s-128>0$

These three conditions give $s>0, s>4$, and $s>8$ respectively. Thus we need $s>8$

The conditions on the upper left determinants of B are:

1. $t>0$
2. $t^{2}-9>0$ 3. $t\left(t^{2}-16\right)-3(3 t)=t^{3}-25 t>0$

These three conditions give $t>0, t>3$, and $t>5$ respectively. Thus we need $t>5$
Note: The problem can also be answered by saying that s, t must be bigger than -1 times the smallest eigenvalue of the matrices A and B respectively.
28.
a. 10
b. 2,5
c. $\left[\begin{array}{c}\cos (\Theta) \\ \sin (\Theta)\end{array}\right],\left[\begin{array}{c}-\sin (\Theta) \\ \cos (\Theta)\end{array}\right]$
d. A is of the form $Q \Lambda Q^{-1}$ where Q is orthogonal and Λ is diagonal, so A is symmetric. A has only positive eigenvalues, so it is positive definite.
35. If $x \neq 0$ then $A x \neq 0$ so $x^{T} A^{T} C A x=(A x)^{T} C(A x)>0$ as C is positive definite. Thus $A^{T} C A$ is positive definite, as claimed.

Section 6.3, Problem 30. (non-MATLAB solution)
a.

The inverse of the left matrix is
$\frac{1}{1+\left(\frac{\Delta t}{2}\right)^{2}}\left[\begin{array}{cc}1 & \frac{\Delta t}{2} \\ -\frac{\Delta t}{2} & 1\end{array}\right]$
We have $A=\frac{1}{1+\left(\frac{\Delta t}{2}\right)^{2}}\left[\begin{array}{cc}1 & \frac{\Delta t}{2} \\ -\frac{\Delta t}{2} & 1\end{array}\right]\left[\begin{array}{cc}1 & \frac{\Delta t}{2} \\ -\frac{\Delta t}{2} & 1\end{array}\right]=\left[\begin{array}{cc}\frac{1-\left(\frac{\Delta t}{2}\right)^{2}}{1+\left(\frac{\Delta t}{2}\right)^{2}} & \frac{\Delta t}{1+\left(\frac{\Delta t}{2}\right)^{2}} \\ -\frac{\Delta t}{1+\left(\frac{t t}{2}\right)^{2}} & \frac{1-\left(\frac{\Delta t}{2}\right)^{2}}{1+\left(\frac{\Delta t}{2}\right)^{2}}\end{array}\right]$
The columns of A are clearly orthogonal. To see that they have unit norm, note that
$\left(\frac{1-\left(\frac{\Delta t}{2}\right)^{2}}{1+\left(\frac{\Delta t}{2}\right)^{2}}\right)^{2}+\left(\frac{\Delta t}{1+\left(\frac{\Delta t}{2}\right)^{2}}\right)^{2}=\frac{1-\frac{(\Delta t)^{2}}{2}+\left(\frac{\Delta t}{2}\right)^{4}+(\Delta t)^{2}}{1+\frac{(\Delta t)^{2}}{2}+\left(\frac{\Delta t}{2}\right)^{4}}=1$
If $B^{T}=-B$ then if $A=(I-B)^{-1}(I+B), A^{T}=(I+B)^{T}\left((I-B)^{T}\right)^{-1}=(I-B)(I+B)^{-1}$
Then $A A^{T}=(I-B)^{-1}(I+B)(I-B)(I+B)^{-1}=(I-B)^{-1}\left(I-B^{2}\right)(I+B)^{-1}=$
$(I-B)^{-1}(I-B)(I+B)(I+B)^{-1}=I$
b.
A is the matrix corresponding to clockwise rotation by $\Theta=\sin ^{-1}\left(\frac{\Delta t}{1+\left(\frac{t t}{2}\right)^{2}}\right) \approx .1957$
Rotating (1,0) clockwise by 32Θ gives approximately (.9998, .0201)
Section 8.1, problem 11. (setup)
This differential equation has the exact solution
$u(x)=c_{1}+\frac{x}{10}+c_{2} e^{10 x}$
Solving $u(0)=u(1)=0$ gives $c_{1}+c_{2}=0, c_{1}+\frac{1}{10}+e^{10} c_{2}=0$
$\left[\begin{array}{cc}1 & 1 \\ 1 & e^{10}\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}0 \\ -\frac{1}{10}\end{array}\right]$
$\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\frac{1}{e^{10}-1}\left[\begin{array}{cc}e^{10} & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}0 \\ -\frac{1}{10}\end{array}\right]=\left[\begin{array}{c}\frac{1}{10\left(e^{10}-1\right)} \\ -\frac{1}{10\left(e^{10}-1\right)}\end{array}\right]$
$u(x)=\frac{1}{10\left(e^{10}-1\right)}+\frac{x}{10}-\frac{e^{10 x}}{10\left(e^{10}-1\right)}$
For the numerical approximation, let $u_{n}=u(n \Delta x)$. Then our condition says that $u_{0}=u_{8}=0$.

Let A	$=\left[\begin{array}{ccccccc}2 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2\end{array}\right]$
Let B_{1}	$=\left[\begin{array}{ccccccc}-1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right]$
Let B_{2}	$=\left[\begin{array}{ccccccc}0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{2} & 0\end{array}\right]$
Let B_{3}	$=\left[\begin{array}{ccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1\end{array}\right]$

Let $u=\left[\begin{array}{c}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6} \\ u_{7}\end{array}\right]$
The equations we need to solve are
$-64 A u+80 B_{i} u=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$
where $i=1$ for the forward differences, 2 for the centered differences, and 3 for the backwards differences.

