2.6 #13 We can guess the following decomposition:

\[
L = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 1 & 1 & 0 \\
 1 & 1 & 1 & 1 \\
\end{bmatrix}
\quad U = \begin{bmatrix}
 a & a & a & a \\
 0 & b-a & b-a & b-a \\
 0 & 0 & c-b & c-b \\
 0 & 0 & 0 & d-c \\
\end{bmatrix}
\]

2.6, #24 Suppose \(A = LU \) for an invertible \(A \); then \(A_k = L_k U_k \), where \(A_k \) denotes the \(k \times k \) matrix formed by looking at the entries which lie in both the first \(k \) rows and the first \(k \) columns (and similarly for \(L_k \) and \(U_k \)). But clearly \(L_k \) and \(U_k \) are invertible, since they have non-zero diagonal entries (since \(L \) and \(U \) are invertible); hence for each \(1 \leq k \leq n \), \(A_k \) is invertible, i.e. has non-zero determinant.

2.7 #3 Since \((AB)^T = B^T A^T\):
\((Ax)^T y = x^T A^T y = x^T (A^T y)\)

2.7 #40 (a) Consider the equation \(Q^T Q = I \); the \((i,i)\)-th entry is 1; expanding this tells us that the \(i \)-th column has norm 1.
(b) Consider the \((i,j)\)-th entry of the equation \(Q^T Q = I \); when \(i,j \) are unequal, the \((i,j)\)-th entry is 0; expanding this means that the \(i \)-th column is perpendicular to the \(j \)-th column.
(c) \[
\begin{bmatrix}
 \cos(t) & -\sin(t) \\
 \sin(t) & \cos(t) \\
\end{bmatrix}
\]

3.1 #5 (a) For instance, the subspace consisting only of scalar multiples of \(A \).
(b) Yes, since \(I = A - B \).
(c) Consider the subspace consisting only of the following matrices:
\[
\begin{bmatrix}
 0 & x \\
 0 & 0 \\
\end{bmatrix}
\]

3.1 #10 Only (a), (d), (e).

3.1 #15 (a) line (but it could be a plane)
(b) point (but it could be a line)
(c) Say \(x,y \) in \(X \cap Y \). Then: \(x+y \) is in \(X \), and \(x+y \) is in \(Y \), so \(x+y \) is in \(X \cap Y \); similarly \(cx \) is in \(X \) and \(cx \) is in \(Y \) so \(cx \) is in \(X \cap Y \).

3.1 #20 (a) \(b_2 = 2b_1, b_1 + b_3 = 0 \) (b) \(b_1 + b_3 = 0 \)

3.1 #23 unless the extra column lies in the span of the columns of \(A \).

The column space gets bigger in the following example:
\[
\begin{bmatrix}
 1 \\
 0 \\
\end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix}
 1 \\
 0 \\
\end{bmatrix}
\]

The column space stays the same in this example: \([1] \rightarrow [1 2]\)
#24 $A = [1]$, $B = [0]$, $AB = [0]$ (the column space of AB is zero, while the column space of A is 1-dimensional)

Q9 4 x 4 permutation matrices \iff permutations of $\{1,2,3,4\}$

the permutation matrix will be symmetric \iff the permutation is an involution

there are 10 involutions:
1, (12), (13), (14), (23), (24), (34), (12)(34), (14)(23), (13)(24); the corresponding matrices are:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}

Q10

\[
\begin{bmatrix}
1 & 2 & 4 \\
2 & 4 & 8 \\
4 & 8 & 16 \\
\end{bmatrix}
\]