18.06 Spring 2013 - Problem Set 4 Solutions

1. $8.2 \# 8$:

$$
\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

2. $8.2 \# 9$: Row reduce the augmented matrix:

$$
\left[\begin{array}{cccc:c}
-1 & 1 & 0 & 0 & b_{1} \\
-1 & 0 & 1 & 0 & b_{2} \\
0 & -1 & 1 & 0 & b_{3} \\
0 & -1 & 0 & 1 & b_{4} \\
0 & 0 & -1 & 1 & b_{5}
\end{array}\right] \rightarrow\left[\begin{array}{cccc:c}
-1 & 1 & 0 & 0 & b_{1} \\
0 & -1 & 1 & 0 & b_{2}-b_{1} \\
0 & 0 & 0 & 0 & b_{3}-b_{2}+b_{1} \\
0 & 0 & -1 & 1 & b_{4}-b_{2}+b_{1} \\
0 & 0 & 0 & 0 & b_{5}-b_{4}+b_{2}-b_{1}
\end{array}\right]
$$

So the requirements are $b_{3}-b_{2}+b_{1}=0$ and $b_{5}-b_{4}+b_{2}-b_{1}=0$. This is Kirchoff's voltage law around the two loops in the graph. (Note that the requirement for the third loop, $b_{3}-b_{5}+b_{4}=0$, follows from the other two. Based on the graph, can you guess why this should be the case?)
3. 8.2 \#11: We have

$$
A^{T} A=\left[\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
0 & -1 & -1 & 2
\end{array}\right]
$$

(a) The diagonal of $A^{T} A$ tells how many edges into each node.
(b) The off-diagonals -1 or 0 tell which pairs of nodes are adjacent.
4. $4.1 \# 3$:
(a)

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
2 & -3 & 1 \\
-3 & 5 & -2
\end{array}\right]
$$

(b) This is impossible, since the null space must be orthogonal to the row space but we have

$$
\left[\begin{array}{lll}
2 & -3 & 5
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]=4 \neq 0 .
$$

(c) This is impossible. Since $A x=(1,1,1)^{T}$ has a solution, $(1,1,1)^{T}$ must be in the column space $C(A)$. But $C(A)$ must be orthogonal to $N\left(A^{T}\right)$, and we have

$$
\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=1 \neq 0
$$

(d)

$$
\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

(e) This is impossible, as the vector $(1,1, \ldots, 1)^{T}$ would then be in both the row space and the null space which are orthogonal to each other.
4.1 \#9: If $A^{T} A x=0$ then $A x=0$. Reason: $A x$ is in the nullspace of A^{T} and also in the column space of A and those spaces are orthogonal.
5. $4.1 \# 10$:
(a) Since A is symmetric, the column space is equal to the row space and is therefore orthgonal to the nullspace.
(b) x is in the nullspace and z is in the column space, hence $x^{T} z=0$.
4.1 \#11: For A : The nullspace is spanned by $(-2,1)$, the row space is spanned by $(1,2)$. The column space is the line through $(1,3)$ and $N\left(A^{T}\right)$ is the perpendicular line through $(3,-1)$. For B : The nullspace of B is spanned by $(0,1)$, the row space is spanned by $(1,0)$. The column space and left nullspace are the same as for A.
6. $4.1 \# 30$: Since $N(A)$ contains $C(B)$, we have $\operatorname{dim}(N(A)) \geq \operatorname{dim} C(B)$. But $\operatorname{dim}(N(A))=$ $4-\operatorname{rank}(A)$ and $\operatorname{dim}(C(B))=\operatorname{rank}(\mathrm{B})$. So we have $4-\operatorname{rank}(A) \geq \operatorname{rank}(B)$, or $\operatorname{rank}(A)+\operatorname{rank}(B) \leq 4$.
7. $4.2 \# 3$:
(a) We have

$$
P=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad P b=\frac{1}{3}\left[\begin{array}{l}
5 \\
5 \\
5
\end{array}\right] .
$$

One can check that $P^{2}=P$.
(b) We have

$$
P=\frac{1}{11}\left[\begin{array}{lll}
1 & 3 & 1 \\
3 & 9 & 3 \\
1 & 3 & 1
\end{array}\right], \quad P b=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]
$$

One can check that $P^{2}=P$.
8. 4.2 \#11:
(a) We have

$$
A^{T} A=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right], \quad A^{T} b=\left[\begin{array}{l}
5 \\
2
\end{array}\right] .
$$

We then solve $A^{T} A x=(5,2)^{T}$ to find $x=(-1,3)^{T}$. We then have $p=A x=$ $(2,3,0)^{T}$. We also have $e=b-p=(0,0,4)^{T}$, which is indeed orthogonal to the columns of A.
(b) We have

$$
A^{T} A=\left[\begin{array}{ll}
2 & 3 \\
2 & 2
\end{array}\right], \quad A^{T} b=\left[\begin{array}{c}
14 \\
8
\end{array}\right] .
$$

We then solve $A^{T} A x=(14,8)^{T}$ to find $x=(-2,6)^{T}$. We then have $p=A x=$ $(4,4,6)^{T}$. We also have $e=b-p=0$, which is orthogonal to the columns of A. In fact we have shown that b is in the columns space of A, since $p=b$.
(c) $4.2 \# 31$: First we need to check that p is contained in the subspace spanned by the a 's. We can do this by using row reduction to determine if the system $A x=p$ has a solution, where A is the $m \times n$ matrix with columns a_{1}, \ldots, a_{n}. If p is indeed in this subspace, we then compute $e=b-p$ and check that e is orthogonal to the vectors a_{1}, \ldots, a_{n}, i.e. $a_{i}^{T} e=0$ for $i=1, \ldots, n$.

```
%%%%%%%%%%%%%%%
% Problem10.m %
%%%%%%%%%%%%%%%
clear,clc
M = CompleteGraph(5)
A = edgelist2incidence(M)
ColSpaceBasis = getcolspacebasis(A)
RowSpaceBasis = getcolspacebasis(A')
L = A'*A
N = null(L); N = N./min(N); NullSpace = rat(N)
B = ColSpaceBasis;
b = 1:10; b = b'
disp('use backslash')
x = B\b
disp('use pseudo inverse')
x = pinv(B)*b
disp('use least squares')
x = lsqlin(B,b)
x = (B'*B) \ (B'*b)
% projection onto column space
p = B*x
%% OR form Areduced and solve these equations
% remove last column (check the remaining columns still form a basis, e.g. with rref)
% in fact, Ar = B above, so we are repeating the same calculation here
Ar = A(:,1:end-1);
Lr = Ar'*Ar
xr = Lr \ (Ar'*b)
p = Ar*xr
%%%%%%%%%%%%%%%%%%%%
% CompleteGraph.m %
%%%%%%%%%%%%%%%%%%%%
function M = CompleteGraph(N)
% generate edge list for complete graph on N nodes
e = 0;
for i = 1:N
    for j = i+1:N
            e = e + 1;
            M(e,1) = i;
            M(e,2) = j;
        end
end
%%%%%%%%%%%%%%%%%%%%%%%%
% edgelist2incidence.m %
%%%%%%%%%%%%%%%%%%%%%%%%
function A = edgelist2incidence(M)
% M is m x 2 matrix
% if edge e connects node i to node j then
% row e = [i j]
% Two conventions:
% 1. columns are increasing
% 2. i < j
m = size(M,1);
n = max(max(M));
A = zeros(m,n);
for e = 1:m
    i = M(e,1); j = M(e,2);
    A(e, i) = -1 ; A(e, j) = +1;
end
```

function $B=$ getcolspacebasis(A)
[E jb] = rref(A);
$B=A(:, j b)$;

