- **1.** (15 points)
- (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: $\dim N(A) \ge 1$, since $\operatorname{rank}(A) \le 3$.
- (b) If we also know that

$$Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

has no solution, what do we know about the rank of A? Solution: C(A) does not span the entire \mathbf{R}^3 , so $rank(A) \leq 2$.

(c) If Ax = b and $A^Ty = 0$, find y^Tb by using those equations. This says that the _____ are ____.

Solution: $y^Tb = y^T(Ax) = (A^Ty)x = 0$. This says that the **column** space of A and the **null space** of A^T are **orthogonal**.

2. (15 points) Suppose Ax = b reduces by the usual row operations to Ux = c:

$$Ux = \begin{bmatrix} 2 & 6 & 4 & 8 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 - b_1 \\ b_3 - 2b_2 + b_1 \end{bmatrix} = c.$$

(a) Give a basis for the nullspace of A (that matrix is not shown) and a basis for the row space of A.

Solution: N(A) = N(U), R(A) = R(U). Therefore we can read the bases directly from U:

$$N(A) = span \left\{ \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\-1\\1 \end{bmatrix} \right\}$$

$$R(A) = span \left\{ \begin{bmatrix} 2\\6\\4\\8 \end{bmatrix}, \begin{bmatrix} 0\\0\\4\\4 \end{bmatrix} \right\}$$

(b) When does Ax = b have a solution? Give a basis for the column space of A. Solution: $b \in C(A)$, equivalent to $c \in C(U)$.

By looking at c as a function of b we can reconstruct A. Let $E = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$. We

have
$$U = EA$$
, $c = Eb$. Hence $A = E^{-1}U = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6 & 4 & 8 \\ 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 4 & 8 \\ 2 & 6 & 8 & 12 \\ 2 & 6 & 12 & 16 \end{bmatrix}$

From here we see that

$$C(A) = span \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}.$$

(c) Give a basis for the nullspace of A^T .

Solution: $N(A^T) \perp C(A)$. So $N(A^T) = span \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$ (we only need to find a vector orthogonal to both basis vectors we gave for C(A)).

- **3.** (10 points)
- (a) Suppose q_1, q_2 are orthonormal in \mathbb{R}^4 , and v is NOT a combination of q_1 and q_2 . Find a vector q_3 by Gram-Schmidt, so that q_1, q_2, q_3 is an orthonormal basis for the space spanned by q_1, q_2, v .

Solution:

$$q_3 = \frac{v - (v^T q_1)q_1 - (v^T q_2)q_2}{\|v - (v^T q_1)q_1 - (v^T q_2)q_2\|}$$

(b) If p is the projection of b onto the subspace spanned by q_1 and q_2 and v, find p as a combination of q_1, q_2, q_3 . (You are solving the least squares problem Ax = b with $A = [q_1, q_2, q_3]$.)

Solution:

$$p = A(A^{T}A)^{-1}A^{T}b = AA^{T}b = q_1(q_1^{T}b) + q_2(q_2^{T}b) + q_3(q_3^{T}b)$$

where we used the fact that the columns of A are orthonormal for $A^TA = I$. (It is easy to see the final result just by thinking that we are actually projecting onto an orthonormal basis).

- **4.** (10 points)
- (a) To solve a square system Ax = b when det $A \neq 0$, Cramer's Rule says that the first component of x is

$$x_1 = \frac{\det B}{\det A}$$
 with $B = [b a_2 \dots a_n]$.

So b goes into the first column of A, replacing a_1 . If $b = a_1$, this formula gives the right answer $x_1 = \frac{\det A}{\det A} = 1$.

- 1. If b = a different column a_j , show that this formula gives the right answer, $x_1 = a$.
- 2. If b is any combination $x_1a_1 + \cdots + x_na_n$, why does this formula give the right answer x_1 ?

Solution:

- 1. $x_1 = 0$, since det(B) = 0. Let us check that it gives the correct answer: the solution to $Ax = a_j$ is $x = e_j$ (it is unique, since $det(A) \neq 0$, so A's columns are linearly independent). Hence $x_1 = 0$.
- 2. For the same reason as above the first component of x is indeed x_1 , the coefficient of a_1 .

Now let us see what Cramer's Rule gives. In this case $\det(B) = \det([b \, a_2 \, \dots \, a_n]) = \det(x_1 \cdot a_1 \, a_2 \, \dots \, a_n) = x_1 \det(A)$. So, indeed, $x_1 = \det(B)/\det(A)$.

(b) Find the determinant of

$$A = \left[\begin{array}{rrrr} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 5 & 0 & 6 & 7 \\ 0 & 0 & 8 & 9 \end{array} \right].$$

Cofactor expansion by the first row:

$$C_{11} = \det \begin{bmatrix} 4 & 0 & 0 \\ 0 & 6 & 7 \\ 0 & 8 & 9 \end{bmatrix} = 4 \cdot 6 \cdot 9 - 4 \cdot 8 \cdot 7 = -8$$

$$C_{12} = -\det \begin{bmatrix} 3 & 0 & 0 \\ 5 & 6 & 7 \\ 0 & 8 & 9 \end{bmatrix} = -(3 \cdot 6 \cdot 9 - 3 \cdot 7 \cdot 8) = 6$$

4

So $det(A) = 1 \cdot (-8) + 2 \cdot 6 = 4$

- **5.** (15 points)
- (a) Suppose an n by n matrix A has n independent eigenvectors x_1, \ldots, x_n with eigenvalues $\lambda_1, \ldots, \lambda_n$. What matrix equation would you solve for c_1, \ldots, c_n to write the vector u_0 as a combination $u_0 = c_1 x_1 + \cdots + c_n x_n$?

Solution:

$$\begin{bmatrix} x_1 x_2 \dots x_n \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = u_0$$

(b) Suppose a sequence of vectors u_0, u_1, u_2, \ldots starts from u_0 and satisfies $u_{k+1} = Au_k$. Find the vector u_k as a combination of x_1, \ldots, x_n .

Solution: Let $u_0 = c_1 x_1 + \dots + c_n x_n$. Then $u_k = A^k u_0 = \sum_{i=1}^n (\lambda_i^k c_i) x_i$.

(c) State the exact requirement on the eigenvalues λ so that $A^k u_0 \to 0$ as $k \to \infty$ for every vector u_0 . Prove that your condition **must hold**.

Solution: $|\lambda_i| < 1$, for all i. Clearly, if this holds, all the coefficients of x_i in $A^k u_0$ go to 0 as $k \to \infty$.

For the converse, we require that the coefficient $\lambda_i^k c_i$ of x_i in $A^k u_0$ to go to 0, for any choice of u_0 . Equivalently, we need $\lambda_i^k c_i \to 0$ for any c_i . Hence $|\lambda_i| < 1$.

- **6.** (10 points)
- (a) Find the eigenvalues of this matrix A (the numbers in each column add to zero).

$$A = \left[\begin{array}{rrr} -1 & \frac{1}{2} & 0 \\ 1 & -1 & 1 \\ 0 & \frac{1}{2} & -1 \end{array} \right].$$

Solution: The number in each column add to zero, hence $\mathbf{1} \in N(A^T)$, so dim $N(A^T) > 0$, and thus $rank(A) = rank(A^T) < 3$. So $\lambda_1 = 0$.

We can easily spot $\lambda_2 = -1$ as another eigenvalue, since subtracting A + I has two equal columns, and hence $\det(A + I) = 0$.

Looking at the trace we get that $\lambda_3 = tr(A) - \lambda_1 - \lambda_2 = -2$.

- (b) If you solve $\frac{du}{dt} = Au$, is (1) or (2) or (3) true as $t \to \infty$?
 - (1) u(t) goes to zero?
 - (2) u(t) approaches a multiple of (what vector?)
 - (3) u(t) blows up?

Solution: Approaches a multiple of $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

Observe that $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ is an eigenvector for the 0 eigenvalue, and that the only nonzero eigenvalue of e^{At} as $t\to\infty$ is $e^{0\cdot t}=1$, with the same eigenvector.

Also, $u(t) = e^{At}u(0)$, and that the only nonzero eigenvalue of e^{At} (as $t \to \infty$) is 1, with the same eigenvector. So $\lim_{t\to\infty} u(t)$ is a projection of u(0) on the line spanned by

 $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, hence a multiple of it.

- 7. (10 points) Every invertible matrix A equals an orthogonal matrix Q times a positive definite matrix S. This famous fact comes directly from the SVD for the square matrix $A = U\Sigma V^T$, by choosing $Q = UV^T$.
- (a) How can you prove that $Q = UV^T$ is orthogonal?

Solution: Q is orthogonal if and only if $Q^TQ = I$. Notice that since A is invertible, U and V are both square matrices of full rank.

$$Q^{T}Q = (UV^{T})^{T}(UV^{T}) = VU^{T}UV^{T} = V(U^{T}U)V^{T} = VV^{T} = I$$

We used the fact that U is orthogonal, hence $U^TU = I$, and that V^T is orthogonal because V's columns are eigenvectors of a symmetric matrix A^TA , so $V^T = V^{-1}$.

(b) Substitute Q^{-1} and A to write $S = Q^{-1}A$ in terms of U, V and Σ . How can you tell that this matrix S is symmetric positive definite?

Solution:

$$S = Q^{-1}A = (UV^T)^{-1}A = (V^T)^{-1}U^{-1}U\Sigma V^T = V\Sigma V^T = (\Sigma^{1/2}V^T)^T(\Sigma^{1/2}V^T)$$

8. (15 points) A 4-node graph has all six possible edges. Its incidence matrix A and its Laplacian matrix A^TA are

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \qquad A^{T}A = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

(a) Describe the null space of A.

Solution: $N(A) = span \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\}$ (Recall that applying A to a vector of potentials gives

the potential drops along edges, so in order for a vector of potentials to be in the null space, all the potentials within one connected component must be the same.)

(b) The all-ones matrix B = ones(4) has what eigenvalues? Then what are the eigenvalues of $A^T A = 4I - B$?

Solution: $B = \vec{1} \cdot \vec{1}^T = 4(\vec{1}/2)(\vec{1}/2)^T$, where $\vec{1}$ is the all-ones vector in \mathbb{R}^4 . So B has eigenvalues 4,0,0,0.

I and B diagonalize in the same eigenbasis, so $\lambda_i(4I - B) = \lambda_i(4I) - \lambda_i(B) = 4\lambda_i(I) - \lambda_i(B)$ for all i. So the eigenvalues of A^TA are 0, 4, 4, 4.

(c) For the Singular Value Decomposition $A = U\Sigma V^T$, can you find the nonzero entries in the diagonal matrix Σ and one column of the orthogonal matrix V?

Solution: $\sigma_i = \sqrt{\lambda_i(A^T A)}$, so the nonzero singular values are 2, 2, 2. We only need to find one eigenvector of $A^T A$. An obvious one is $\vec{1}/2$, since all the rows sum up to 0.