Solutions

1. (24 points total)
(a) (6 points) What matrix P projects every vector in \mathbf{R}^{3} onto the line that passes through origin and $a=(3,4,5)$?
(b) (6 points) What is the nullspace of that matrix P ?
(c) (6 points) What is the row space of P^{2} ?
(d) (6 points) What is the determinant of P ?

Solution.

(a) The projection of the vector $(1,0,0)$ onto the line $a=(3,4,5)$ is $(9 / 50,12 / 50,15 / 50)$. Similarly, the projections of vectors $(0,1,0)$ and $(0,0,1)$ are $(12 / 50,16 / 50,20 / 50)$ and $(15 / 50,20 / 50,25 / 50)$ correspondingly. These are the columns of the projection matrix:

$$
P=\left[\begin{array}{rrr}
9 / 50 & 12 / 50 & 15 / 50 \\
12 / 50 & 16 / 50 & 20 / 50 \\
15 / 50 & 20 / 50 & 25 / 50
\end{array}\right]=\left[\begin{array}{rrr}
9 / 50 & 6 / 25 & 3 / 10 \\
6 / 25 & 8 / 25 & 2 / 5 \\
3 / 10 & 2 / 5 & 1 / 2
\end{array}\right] .
$$

(b) The nullspace of P is 2-dimensional. It can be generated by the following two vectors orthogonal to $a=(3,4,5):(-5 / 3,0,1)$ and $(-4 / 3,1,0)$.
(c) Row space of P^{2} is the same as row space of P, since $P^{2}=P$. Row space of P is generated by $a=(3,4,5)$.
(d) The projection is onto 1-dimensional space, therefore, the rank of matrix P must equal to 1 . Therefore, the determinant of P is 0 .
2. (25 points total)
(a) (11 points) Suppose \widehat{x} is the best least squares solution to $A x=b$ and \widehat{y} is the best least squares solution to $A y=c$.
Does this tell you the best least squares solution \widehat{z} to $A z=b+c$? If so, what is the best \widehat{z} and why?
(b) (7 points) If Q is an m by n matrix with orthonormal columns, find the best least squares solution \widehat{x} to $Q x=b$.
(c) (7 points) If $A=Q R$, where R is square invertible and Q is the same as in (b), find the least squares solution to $A x=b$.

Solution.

(a) Denote by P the projection onto the column space of A. We have $A \widehat{x}=P b$ and $A \widehat{y}=P c$. That means $A \widehat{x}+A \widehat{y}=P b+P c=P(b+c)$. It follows that $\widehat{x}+\widehat{y}$ is the least squares solution for $A \widehat{z}=b+c$.
(b) The least squares solution can be written as $\widehat{x}=\left(Q^{T} Q\right)^{-1} Q^{T} b$. As Q is orthonormal, $Q^{T} Q=I$. Therefore, $\widehat{x}=Q^{T} b$. Alternatively, solving least squares means finding a solution to $Q^{T} Q \widehat{x}=Q^{T} b$. As $Q^{T} Q=I$, we see that $\widehat{x}=Q^{T} b$.
(c) The least squares solution can be written as $\widehat{x}=\left(A^{T} A\right)^{-1} A^{T} b=$ $\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} b$. As Q is orthonormal, $Q^{T} Q=I$. Therefore, $\widehat{x}=$ $\left(R^{T} R\right)^{-1} R^{T} Q^{T} b$. As R is invertible, we get $\widehat{x}=\left(R^{T} R\right)^{-1} R^{T} Q^{T} b=$ $R^{-1}\left(R^{T}\right)^{-1} R^{T} Q^{T} b=R^{-1} Q^{T} b$.
3. (25 points total)
(a) (17 points) Find the determinant of this matrix A (with an unknown x in 4 entries).

$$
A=\left[\begin{array}{llll}
x & 1 & 0 & 0 \\
2 & x & 2 & 0 \\
0 & 3 & x & 3 \\
0 & 0 & 4 & x
\end{array}\right] \quad B=\left[\begin{array}{cccc}
x & 1 & 0 & 1 \\
2 & x & 2 & 0 \\
0 & 3 & x & 3 \\
0 & 0 & 4 & x
\end{array}\right]
$$

You could use the big formula or the cofactor formula or possibly the pivot formula.
(b) (5 points) Find the determinant for matrix B which has an additional 1 in the corner. What new contribution to the determinant does this 1 make?
(c) (3 points) If M is any 3 by 3 matrix, let $f(x)=\operatorname{det}(x M)$. Find the derivative of f at $x=1$.

Solution.
(a) Using the cofactor method we can expand the determinant of A as:

$$
=x \operatorname{det}\left(\left[\begin{array}{ccc}
x & 2 & 0 \\
3 & x & 3 \\
0 & 4 & x
\end{array}\right]\right)-1 \operatorname{det}\left(\left[\begin{array}{ccc}
2 & 2 & 0 \\
0 & x & 3 \\
0 & 4 & x
\end{array}\right]\right) .
$$

We can calculate the 3 by 3 determinants by using any formula. The first one has determinant $x^{3}-18 x$, and the second one $2 x^{2}-24$. The determinant of A is $x^{4}-20 x^{2}+24$.
(b)

By the cofactor formula one more term is added, which is equal

$$
-1 \operatorname{det}\left(\left[\begin{array}{lll}
2 & x & 2 \\
0 & 3 & x \\
0 & 0 & 4
\end{array}\right]\right)
$$

The 3 by 3 matrix is triangular, so its determinant is the product of the diagonal elements and is equal to 24 . So $\operatorname{det}(B)=\operatorname{det}(A)-24=$ $x^{4}-20 x^{2}$.
(c)

For a 3 by 3 matrix $f(x)=\operatorname{det}(x M)=x^{3} \operatorname{det}(M)$. The derivative $f^{\prime}(x)=3 x^{2} \operatorname{det}(M)$.
4. (26 points total)
(a) (6 points) Find the projection p of the vector b onto the column space of A.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 2 \\
2 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]
$$

(b) (7 points) Use Gram-Schmidt to find an orthogonal basis q_{1}, q_{2} for the column space of A.
(c) (6 points) Find the projection p of the same vector b onto the column space of the new matrix Q with columns q_{1} and q_{2}.
(d) (7 points) True or False: The best least squares solution \widehat{x} to $A x=b$ is the same as the best least squares solution \widehat{y} to $Q y=b$. Explain why.

Solution.

(a) By the formula, the projection is $A\left(A^{T} A\right)^{-1} A^{T} b$:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 3 \\
2 & 2 \\
2 & 1
\end{array}\right]\left(\left[\begin{array}{lll}
1 & 2 & 2 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 2 \\
2 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{lll}
1 & 2 & 2 \\
3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
9 & 9 \\
9 & 14
\end{array}\right]^{-1}\left[\begin{array}{l}
11 \\
12
\end{array}\right]=} \\
& =\left[\begin{array}{ll}
1 & 3 \\
2 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
14 / 45 & -0.2 \\
-0.2 & 0.2
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 2 \\
3 & 2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-13 / 45 & 0.4 \\
2 / 9 & 0 \\
19 / 45 & -0.2
\end{array}\right]\left[\begin{array}{l}
11 \\
12
\end{array}\right]=\left[\begin{array}{c}
73 / 45 \\
22 / 9 \\
101 / 45
\end{array}\right] .
\end{aligned}
$$

(b) $q_{1}=(1,2,2)$-the first column of A. The projection of $(3,2,1)$ onto $(1,2,2)$ is $(1,2,2)$, with an error vector $e=(2,0,-1)$. Thus $q_{2}=$ $(2,0,-1)$.
(c) Columns q_{1} and q_{2} span the same space as columns of A. Thus the projection must be the same as before.
(d) Matrices A and Q span the same column space. Dentoe the projection of b onto that space as p. The solution \widehat{x} satisfies the equation: $A \widehat{x}=p$, the solution \widehat{y} satisfies the equation $Q \widehat{y}=p$. Now $A=Q R$, which means $\widehat{y}=R \widehat{x}$.

