18.06 Exam 1 review

- 1. Fill the blanks: for an $n \times n$ invertible matrix A, the column space C(A) =_____, the null space N(A) =_____, the pivot columns are _____, R = rref(A) equals _____, and the solution to $A\mathbf{x} = \mathbf{b}$ is _____.
- 2. Answer to the same question as in Problem 1, when $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 2 & 2 \end{bmatrix}$. What are the special solutions to $A\mathbf{x} = \mathbf{0}$?
- 3. Answer to the same question as in Problem 1, when $A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}$. What are the special solutions to $A\mathbf{x} = \mathbf{0}$?
- 4. If E is a square and invertible matrix,
 - (a) How is C(EA) related to C(A)?
 - (b) How is N(EA) related to N(A)?
 - (c) How is rref(EA) related to rref(A)?
- 5. If A is a 5×6 matrix and R = rref(A),
 - (a) Why are there nonzero solutions to $A\mathbf{x} = \mathbf{0}$?
 - (b) How is $C([A \ A])$ related to C(A)? (Note that $[A \ A]$ is a 5×12 matrix.)
 - (c) There are at least _ special solutions to $\begin{bmatrix} A & A \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = [0]$.
- 6. If P is a permutation matrix, explain why $P^N = I$ holds for some positive integer N.
- 7. (a) If A and B are 4×4 and AB is invertible, show that A is invertible.
 - (b) A 5×4 matrix times a 4×5 matrix cannot produce an invertible 5×5 matrix. Why not?
- 8. Here are 8 equivalent statements (plus 2 more that involve A^TA coming soon).
 - (1) The columns of A are independent
 - (2) The rows of A span \mathbb{R}^n
 - (3) The rank of A is n: "full column rank"
 - (4) All the columns of A are pivot columns so $R = \begin{bmatrix} I \\ 0 \end{bmatrix}$
 - (5) The nullspace N(A) contains only the zero vector
 - (6) The row space $\mathbf{C}(A^T)$ is all of \mathbf{R}^n
 - (7) The columns of A are a basis for its column space
 - (8) If Ax = Ay then x = y (uniqueness of solutions to Ax = b)
 - (9) The matrix $A^T A$ is invertible (and symmetric positive definite)
 - (10) A has a left-inverse $B = (A^T A)^{-1} A^T$, with BA = I

Can you find 8 (or 10) parallel statements, all equivalent to this statement 1?

1

- (1) The rows of A are independent.
- 9. Spring 2014, Exam 1, Problem 2

- $10.\ \, \text{Spring }2014,\, \text{Exam }1,\, \text{Problem }3$
- 11. Fall 2012, Exam 1, Problem 1
- 12. 3.5.26
- 13. 3.6.16
- 14. A good final practice set is to try Exam1 from Fall 2014. Remember you only have $50 \mathrm{min}$ to do it.