18.06 Problem Set 6 - SOLUTIONS

Problem 1.

Let A be an n by n square matrix and let v be the n by 1 vector of all ones. Then if the entries in every row of A add to zero, $A v=0$, so A is not invertible and $\operatorname{det} A=0$. Similarly, if the entries in every row of A add to one, $(A-I) v=0$, so $A-I$ is not invertible and $\operatorname{det}(A-I)=0$.

Problem 2.

(a) $C_{1}=0, C_{2}=-1, C_{3}=0, C_{4}=1$.
(b) By taking the cofactor expansion along the first row, we obtain $C_{n}=-C_{n-2}$, so $C_{2 n}=(-1)^{n}$ and $C_{2 n+1}=0$. Thus $C_{10}=-1$.

Problem 3.

For A : Taking the cofactor expansion along the second row, we compute $\operatorname{det} A=$ b.

For B : Recall that subtracting a multiple of a row from another row does not change the determinant. Perform the following three row operations in order: subtract a times the third row from the last row, subtract a times the second row from the third row, and subtract a times the first row from the second row. This yields the matrix

$$
\left[\begin{array}{cccc}
1 & a & a^{2} & a^{3} \\
0 & 1-a^{2} & a-a^{3} & a^{2}-a^{4} \\
0 & 0 & 1-a^{2} & a-a^{3} \\
0 & 0 & 0 & 1-a^{2}
\end{array}\right]
$$

which has determinant $\left(1-a^{2}\right)^{3}=1-3 a^{2}+3 a^{4}-a^{6}=\operatorname{det} B$.

Problem 4.

(a) The subspace spanned by the last three rows is at most two-dimensional.
(b) Let x be any term in the big formula for $\operatorname{det} A$, so up to sign

$$
x=a_{1 \sigma(1)} a_{2 \sigma(2)} a_{3 \sigma(3)} a_{4 \sigma(4)} a_{5 \sigma(5)}
$$

for some permutation σ of $\{1, \ldots, 5\}$. (The sign equals $\operatorname{det} P$ where P is the permutation matrix with $P_{i \sigma(i)}=1$ and zero entries elsewhere). Then since $\sigma(3), \sigma(4), \sigma(5)$ are distinct, at least one of $a_{3 \sigma(3)}, a_{4 \sigma(4)}, a_{5 \sigma(5)}$ must be zero, so $x=0$.

Problem 5.

Let A be a m by m square matrix such that $|\operatorname{det}(A)|>1$. Suppose for a contradiction that there exists a constant C such that $\left|\left(A^{n}\right)_{i j}\right| \leq C$ for all $1 \leq$ $i, j \leq m$. Then

$$
\left|\operatorname{det}\left(A^{n}\right)\right|=\left|\sum_{\sigma} \operatorname{det}(\sigma)\left(A^{n}\right)_{1 \sigma(1)} \ldots\left(A^{n}\right)_{m \sigma(m)}\right| \leq \sum_{\sigma} C^{m}=m!C^{m}
$$

where the sum is over all permutations σ of $\{1, \ldots, m\}$ and $\operatorname{det}(\sigma)$ is the determinant of the associated permutation matrix. But $\left|\operatorname{det}\left(A^{n}\right)\right|=|\operatorname{det}(A)|^{n} \rightarrow \infty$ as $n \rightarrow \infty$, a contradiction. To put it in words, the determinant of a matrix is a polynomial in the entries of a matrix, so if all those entries are bounded then the determinant is bounded. However, the determinant of A^{n} goes (in absolute value) to infinity as $n \rightarrow \infty$, so we cannot have a bound on all the entries.

For the second part of the problem, $A=\left[\begin{array}{cc}2 & 0 \\ 0 & 1 / 4\end{array}\right]$ is an example of a matrix with $\operatorname{det}(A)=1 / 2$ but $\left(A^{n}\right)_{11}=2^{n} \rightarrow \infty$ as $n \rightarrow \infty$.

