18.06 Exam the First

17 February 2016

NAME:

1. Yay OR NAY

For each of the following collection of vectors in \mathbf{R}^{3}, answer YES or NO: are they linearly independent? (You do not have to justify your answer.)
(a) $\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right\}$
(b) $\left\{\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\right\}$
(c) $\left\{\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}5 \\ 4 \\ 5\end{array}\right)\right\}$
(d) $\left\{\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}17 \\ 0 \\ 0\end{array}\right)\right\}$
(e) $\left\{\left(\begin{array}{l}2 \\ 1 \\ 6\end{array}\right),\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 9\end{array}\right)\right\}$
(f) $\left\{\left(\begin{array}{l}2 \\ 1 \\ 6\end{array}\right),\left(\begin{array}{l}5 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 9\end{array}\right),\left(\begin{array}{l}8 \\ 8 \\ 5\end{array}\right)\right\}$

2. Construct

In \mathbf{R}^{3}, find three vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ such that the angle between any pair of them is $\pi / 3$.

3. Do not compute

How many solutions does the following system of 100 linear equations in variables $x_{1}, x_{2}, \ldots, x_{100}$ have?

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{98}+x_{99} & =1 \\
x_{1}+x_{2}+\cdots+x_{98}+x_{100} & =2 \\
& \vdots \\
x_{1}+x_{3}+\cdots+x_{99}+x_{100} & =99 \\
x_{2}+\cdots+x_{99}+x_{100} & =100
\end{aligned}
$$

4. Intersectionalism

What's the angle between the following two lines in \mathbf{R}^{9} ?

$$
\lambda_{1}(t)=(t,-t, t,-t, t,-t, t,-t, t)
$$

and

$$
\lambda_{2}(t)=(2 t, 2 t)
$$

5. The pentachoron

In \mathbf{R}^{2}, we had the equilateral triangle, in \mathbf{R}^{3}, we had the regular tetrahedron, and in \mathbf{R}^{4}, we have the regular pentachoron, which is made up of 5 tetrahedra. It has 5 vertices:

$$
\begin{aligned}
& \left(1,1,1,-\frac{1}{\sqrt{5}}\right), \\
& \left(1,-1,-1,-\frac{1}{\sqrt{5}}\right), \\
& \left(-1,1,-1,-\frac{1}{\sqrt{5}}\right), \\
& \left(-1,-1,1,-\frac{1}{\sqrt{5}}\right), \\
& \left(0,0,0, \sqrt{5}-\frac{1}{\sqrt{5}}\right)
\end{aligned}
$$

If there were such a thing as 4 -dimensional methane, it would have a "carbonoid" atom bonded to 5 "hydrogenoid" atoms, arranged in a regular pentachoron whose center would be the "carbonoid" atom. What would be the angle between the bonds in 4-dimensional methane?

