# 18.06 Exam III: Orthogonalize this! 

6 April 2016

NAME: $\qquad$
RECITATION: $\qquad$


2

## 1. VEracious or fallacious

For each of the following sentences, indicate whether they are true or false. (No need to justify your answer.)
(a) If $\vec{v} \in \mathbf{R}^{n}$ is a vector and $W \subseteq \mathbf{R}^{n}$ is a vector subspace, then the projection $\pi_{W}(\vec{v})=\overrightarrow{0}$ if and only if, for any vector $\vec{w} \in W$, one has $\vec{v} \cdot \vec{w}=0$.
(b) If $\vec{v} \in \mathbf{R}^{n}$ is a vector and $W \subseteq \mathbf{R}^{n}$ is a vector subspace, then

$$
\left\|\pi_{W}(\vec{v})\right\| \leq\|\vec{v}\| .
$$

(c) Two vector subspaces $V, W \subset \mathbf{R}^{n}$ such that $V \cap W=\{\overrightarrow{0}\}$ are othrogonal.
(d) Any vector subspace $W \subseteq \mathbf{R}^{n}$ has an orthonormal basis.
(e) The only orthonormal basis of $\mathbf{R}^{n}$ is the standard basis $\hat{e}_{1}, \ldots, \hat{e}_{n}$.

## 2. Solve

Find an orthogonal basis for the space of solutions to the following system of linear equations in the five variables $u, v, w, x, y$ :

$$
\begin{array}{r}
u+w+y=0 \\
v+x=0
\end{array}
$$

4
3. Is THIS PROJECTION ACCURATE?

What is the projection of the vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \in \mathbf{R}^{3}$ onto the plane $3 x-4 y+z=$ 0 ?

## 4. More projecting

Compute the projection of the vector $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right) \in \mathbf{R}^{5}$ onto the image of the following matrix:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

## 5. Householder

Suppose $\widehat{x} \in \mathbf{R}^{n}$ a unit vector. Write

$$
N=\left\{\vec{v} \in \mathbf{R}^{n} \mid \vec{v} \cdot \hat{x}=0\right\} \subset \mathbf{R}^{n} .
$$

This $N$ is an $(n-1)$-dimensional vector subspace of $\mathbf{R}^{n}$. Also, write $H$ for the $n \times n$ matrix $I-2 \widehat{x} \widehat{x}^{\top}$.

Prove that the projection $\pi_{N}(\vec{w})$ of $\vec{w}$ onto $N$ is equal to the projection $\pi_{N}(H \vec{w})$ of $H \vec{w}$ onto $N$.

