18.06 Exam III: Orthogonalize this! 6 April 2016

NAME: _____

RECITATION: _____

1. VERACIOUS OR FALLACIOUS

For each of the following sentences, indicate whether they are true or false. (No need to justify your answer.)

- (a) If $\vec{v} \in \mathbf{R}^n$ is a vector and $W \subseteq \mathbf{R}^n$ is a vector subspace, then the projection $\pi_W(\vec{v}) = \vec{0}$ if and only if, for any vector $\vec{w} \in W$, one has $\vec{v} \cdot \vec{w} = 0$.
- (b) If $\vec{v} \in \mathbf{R}^n$ is a vector and $W \subseteq \mathbf{R}^n$ is a vector subspace, then $\|\pi_W(\vec{v})\| \le \|\vec{v}\|.$

2

- (c) Two vector subspaces $V, W \in \mathbf{R}^n$ such that $V \cap W = {\vec{0}}$ are othrogonal.
- (d) Any vector subspace $W \subseteq \mathbf{R}^n$ has an orthonormal basis.
- (e) The only orthonormal basis of \mathbb{R}^n is the standard basis $\hat{e}_1, \ldots, \hat{e}_n$.

2. Solve

Find an orthogonal basis for the space of solutions to the following system of linear equations in the five variables u, v, w, x, y:

$$u + w + y = 0$$
$$v + x = 0$$

3. Is this projection accurate?

What is the projection of the vector $\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} \in \mathbf{R}^3$ onto the plane 3x - 4y + z = 0?

4

5. Householder

Suppose $\hat{x} \in \mathbf{R}^n$ a unit vector. Write

$$N = \{ \vec{v} \in \mathbf{R}^n \mid \vec{v} \cdot \hat{x} = 0 \} \subset \mathbf{R}^n.$$

This *N* is an (n-1)-dimensional vector subspace of \mathbb{R}^n . Also, write *H* for the $n \times n$ matrix $I - 2\hat{x}\hat{x}^{\mathsf{T}}$.

Prove that the projection $\pi_N(\vec{w})$ of \vec{w} onto N is equal to the projection $\pi_N(H\vec{w})$ of $H\vec{w}$ onto N.