18.06 Exam III: Orthogonalize this!

6 April 2016

NAME: $\frac{\text { Donald J. Trump }}{\text { RECITATION: }}$

2

1. VEracious or fallacious

For each of the following sentences, indicate whether they are true or false. (No need to justify your answer.)
(a) If $\vec{v} \in \mathbf{R}^{n}$ is a vector and $W \subseteq \mathbf{R}^{n}$ is a vector subspace, then the projection $\pi_{W}(\vec{v})=\overrightarrow{0}$ if and only if, for any vector $\vec{w} \in W$, one has $\vec{v} \cdot \vec{w}=0$. TRUE.
(b) If $\vec{v} \in \mathbf{R}^{n}$ is a vector and $W \subseteq \mathbf{R}^{n}$ is a vector subspace, then

$$
\left\|\pi_{W}(\vec{v})\right\| \leq\|\vec{v}\| .
$$

TRUE.
(c) Two vector subspaces $V, W \subset \mathbf{R}^{n}$ such that $V \cap W=\{\overrightarrow{0}\}$ are othrogonal. FALSE.
(d) Any vector subspace $W \subseteq \mathbf{R}^{n}$ has an orthonormal basis. TRUE.
(e) The only orthonormal basis of \mathbf{R}^{n} is the standard basis $\hat{e}_{1}, \ldots, \hat{e}_{n}$. FALSE.

2. Solve

Find an orthogonal basis for the space of solutions to the following system of linear equations in the five variables u, v, w, x, y :

$$
\begin{array}{r}
u+w+y=0 \\
v+x=0
\end{array}
$$

Solution. Let's use column operations to compute a basis of the kernel of $\left(\begin{array}{lllll}1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0\end{array}\right)$:

$$
\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \leadsto \leadsto\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\hline 1 & 0 & -1 & 0 & -1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

So we have a basis

$$
\vec{v}_{1}=\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right),
$$

which we have to orthogonalize. But \vec{v}_{1} and \vec{v}_{2} are already orthogonal, so we set $\vec{w}_{1}=\vec{v}_{1}$ and $\vec{w}_{2}=\vec{v}_{2}$, and we only have to worry about fixing \vec{v}_{3}. Now \vec{v}_{3} is already orthogonal to \vec{v}_{2}, so we have

$$
\begin{aligned}
\vec{w}_{3} & =\vec{v}_{3}-\pi_{\vec{w}_{1}}\left(\vec{v}_{3}\right) \\
& =\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
-1 / 2 \\
0 \\
-1 / 2 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

And $\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$ is our desired orthogonal basis.

4
3. Is THIS PROJECTION ACCURATE?

What is the projection of the vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \in \mathbf{R}^{3}$ onto the plane $3 x-4 y+z=$ 0 ?
Solution. The vector $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ lies on the plane $3 x-4 y+z=0$, so its projection onto that plane is simply $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ again.

4. More projecting

Compute the projection of the vector $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right) \in \mathbf{R}^{5}$ onto the image of the following matrix:

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 1 \\
1 & -1 & 0
\end{array}\right) .
$$

Solution. Let's call the vector \vec{b} and the matrix A. The columns of A are linearly independent, so we'll compute the projection using the formula

$$
\pi_{\mathrm{im} A}(\vec{b})=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} .
$$

We have

$$
A^{\top} \vec{b}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \text {. }
$$

We get

$$
A^{\top} A=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 2
\end{array}\right),
$$

which is extremely easy to invert: we get

$$
\left(A^{\top} A\right)^{-1}=\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 4 & 0 \\
0 & 0 & 1 / 2
\end{array}\right),
$$

and so

$$
\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}=\left(\begin{array}{c}
1 / 2 \\
-1 / 4 \\
1
\end{array}\right) .
$$

Now we get

$$
\pi_{\operatorname{im} A}(\vec{b})=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}=\left(\begin{array}{c}
1 / 3 \\
1 \\
-1 / 3 \\
1 \\
1 / 3
\end{array}\right) \text {. }
$$

6

5. Householder

Suppose $\widehat{x} \in \mathbf{R}^{n}$ a unit vector. Write

$$
N=\left\{\vec{v} \in \mathbf{R}^{n} \mid \vec{v} \cdot \hat{x}=0\right\} \subset \mathbf{R}^{n} .
$$

This N is an $(n-1)$-dimensional vector subspace of \mathbf{R}^{n}. Also, write H for the $n \times n$ matrix $I-2 \widehat{x} \widehat{x}^{\top}$.

Prove that the projection $\pi_{N}(\vec{w})$ of \vec{w} onto N is equal to the projection $\pi_{N}(H \vec{w})$ of $H \vec{w}$ onto N.

Solution. Suppose $\vec{v}_{1}, \ldots, \vec{v}_{n-1}$ a basis of N; each of these vectors is perpindicular to \widehat{x}, so that

$$
\vec{v}_{i}^{\top} \widehat{x}=\vec{v}_{i} \cdot \widehat{x}=0
$$

Now if $A=\left(\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v}_{n-1}\end{array}\right)$, then we have

$$
\begin{aligned}
\pi_{N}(H \vec{w}) & =A\left(A^{\top} A\right)^{-1} A^{\top}\left(I-2 \widehat{x} \widehat{x}^{\top}\right) \vec{w} \\
& =A\left(A^{\top} A\right)^{-1} A^{\top} \vec{w}-2 A\left(A^{\top} A\right)^{-1} A^{\top} \widehat{x} \widehat{x}^{\top} \vec{w}
\end{aligned}
$$

Since

$$
\pi_{N}(\vec{w})=A\left(A^{\top} A\right)^{-1} A^{\top} \vec{w}
$$

we want to show that

$$
2 A\left(A^{\top} A\right)^{-1} A^{\top} \hat{x}^{\top} \widehat{x}^{\top} \vec{w}=\overrightarrow{0}
$$

But this is true: we have

$$
A^{\top} \hat{x}=\left(\begin{array}{c}
\vec{v}_{1}^{\top} \hat{x} \\
\vdots \\
\vec{v}_{n-1}^{\top} \hat{x}
\end{array}\right)=\overrightarrow{0},
$$

and the proof is complete.

