18.06 Exam III: Orthogonalize this! 6 April 2016

NAME:	Donald J. Trump
RECITATION:	R666

G	RADI	NG
1	20	_/20
2	20	_/20
3	20	_/20
4·	20	_/20
5	20	_/20
TOTA	L	
		/100

1. VERACIOUS OR FALLACIOUS

For each of the following sentences, indicate whether they are true or false. (No need to justify your answer.)

- (a) If $\vec{v} \in \mathbf{R}^n$ is a vector and $W \subseteq \mathbf{R}^n$ is a vector subspace, then the projection $\pi_W(\vec{v}) = \vec{0}$ if and only if, for any vector $\vec{w} \in W$, one has $\vec{v} \cdot \vec{w} = 0$. TRUE.
- (b) If $\vec{v} \in \mathbf{R}^n$ is a vector and $W \subseteq \mathbf{R}^n$ is a vector subspace, then

$$\|\pi_W(\vec{v})\| \le \|\vec{v}\|.$$

TRUE.

- (c) Two vector subspaces $V, W \in \mathbf{R}^n$ such that $V \cap W = {\vec{0}}$ are othrogonal. FALSE.
- (d) Any vector subspace $W \subseteq \mathbf{R}^n$ has an orthonormal basis. TRUE.
- (e) The only orthonormal basis of \mathbb{R}^n is the standard basis $\hat{e}_1, \dots, \hat{e}_n$. FALSE.

2. Solve

Find an orthogonal basis for the space of solutions to the following system of linear equations in the five variables u, v, w, x, y:

$$u + w + y = 0$$
$$v + x = 0$$

Solution. Let's use column operations to compute a basis of the kernel of $\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$:

So we have a basis

$$\vec{v}_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix},$$

which we have to orthogonalize. But \vec{v}_1 and \vec{v}_2 are already orthogonal, so we set $\vec{w}_1 = \vec{v}_1$ and $\vec{w}_2 = \vec{v}_2$, and we only have to worry about fixing \vec{v}_3 . Now \vec{v}_3 is already orthogonal to \vec{v}_2 , so we have

$$\vec{w}_{3} = \vec{v}_{3} - \pi_{\vec{w}_{1}}(\vec{v}_{3})$$

$$= \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} -1/2 \\ 0 \\ -1/2 \\ 0 \\ 1 \end{pmatrix}.$$

And $\{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ is our desired orthogonal basis.

3. Is this projection accurate?

What is the projection of the vector
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} \in \mathbf{R}^3$$
 onto the plane $3x - 4y + z = 0$?
Solution. The vector $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ lies on the plane $3x - 4y + z = 0$, so its projection onto that plane is simply $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ again.

Compute the projection of the vector $\begin{pmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{pmatrix} \in \mathbf{R}^5$ onto the image of the following matrix:

$$\left(\begin{array}{rrrrr}1 & 1 & 0\\ 0 & 1 & 1\\ -1 & 0 & 0\\ 0 & -1 & 1\\ 1 & -1 & 0\end{array}\right)$$

Solution. Let's call the vector \vec{b} and the matrix *A*. The columns of *A* are linearly independent, so we'll compute the projection using the formula

$$\pi_{\operatorname{im} A}(\vec{b}) = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\vec{b}.$$

We have

$$A^{\mathsf{T}}\vec{b} = \begin{pmatrix} 1\\0\\2 \end{pmatrix}.$$

We get

$$A^{\mathsf{T}}A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix},$$

which is extremely easy to invert: we get

$$(A^{\mathsf{T}}A)^{-1} = \begin{pmatrix} 1/3 & 0 & 0\\ 0 & 1/4 & 0\\ 0 & 0 & 1/2 \end{pmatrix},$$

and so

$$(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\vec{b} = \begin{pmatrix} 1/2\\ -1/4\\ 1 \end{pmatrix}.$$

Now we get

$$\pi_{\operatorname{im} A}(\vec{b}) = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\vec{b} = \begin{pmatrix} 1/3 \\ 1 \\ -1/3 \\ 1 \\ 1/3 \end{pmatrix}.$$

5. Householder

Suppose $\hat{x} \in \mathbf{R}^n$ a unit vector. Write

$$\mathbf{N} = \{ \vec{v} \in \mathbf{R}^n \mid \vec{v} \cdot \hat{x} = 0 \} \subset \mathbf{R}^n$$

This *N* is an (n-1)-dimensional vector subspace of \mathbb{R}^n . Also, write *H* for the $n \times n$ matrix $I - 2\hat{x}\hat{x}^{\mathsf{T}}$.

Prove that the projection $\pi_N(\vec{w})$ of \vec{w} onto N is equal to the projection $\pi_N(H\vec{w})$ of $H\vec{w}$ onto N.

Solution. Suppose $\vec{v}_1, \ldots, \vec{v}_{n-1}$ a basis of N; each of these vectors is perpindicular to \hat{x} , so that $\vec{v}_i^{\mathsf{T}} \hat{x} = \vec{v}_i \cdot \hat{x} = 0.$

Now if
$$A = (\vec{v}_1 \cdots \vec{v}_{n-1})$$
, then we have

$$\pi_N(H\vec{w}) = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}(I - 2\hat{x}\hat{x}^{\mathsf{T}})\vec{w}$$

$$= A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\vec{w} - 2A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\hat{x}\hat{x}^{\mathsf{T}}\vec{w}.$$

Since

$$\pi_N(\vec{w}) = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\vec{w},$$

we want to show that

$$2A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\widehat{x}\widehat{x}^{\mathsf{T}}\vec{w} = \vec{0}.$$

But this is true: we have

$$A^{\mathsf{T}}\widehat{x} = \begin{pmatrix} \vec{v}_1^{\mathsf{T}}\widehat{x} \\ \vdots \\ \vec{v}_{n-1}^{\mathsf{T}}\widehat{x} \end{pmatrix} = \vec{0},$$

and the proof is complete.

		1
н		1
		1