18.06 Final Exam

19 May 2016 at 9 AM

STATE YOUR NAME: \qquad

Ro1	$10-11$	Sauer-Ayala
Ro2	$10-11$	Carpentier
Ro3	$11-12$	Sauer-Ayala
Ro4	$11-12$	Carpentier
Ro5	$12-13$	Hopkins
Ro6	$12-13$	Anno
Ro7	$13-14$	Hopkins
Ro8	$13-14$	Anno
Ro9	$14-15$	Fei
R10	$14-15$	Knizel
R11	$15-16$	Knizel

2

1. Clinton or Trump

For each of the following sentences, indicate whether they are true or false. (No need to justify your answer.)
(a) If A is an $n \times n$ matrix with characteristic polynomial $p_{A}(t)=t^{n}$, then $A=0$.
(b) If A is a matrix, then any element of the kernel of A is perpindicular to any element of the image of A^{\top}.
(c) The only $m \times n$ matrix of rank 0 is 0 .
(d) There is a orthogonal basis of \mathbf{C}^{3} consisting of eigenvectors for the matrix

$$
\left(\begin{array}{ccc}
17822 & -759 i & -14795+69532 i \\
759 i & 568347 & 385955 \\
-14795-69532 i & 385955 & 10479
\end{array}\right)
$$

(e) If

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

is an $2 n \times 2 n$ matrix in which A, B, C, and D are all $n \times n$ blocks, then

$$
\operatorname{det} M=(\operatorname{det} A)(\operatorname{det} D)-(\operatorname{det} B)(\operatorname{det} C) .
$$

2. Solve

Write a basis for the space of solutions to the system of linear equations

$$
\begin{aligned}
a+b+2 c+4 d+7 e & =0 \\
a+2 b+4 c+7 d+13 e & =0 ; \\
2 a+4 b+7 c+13 d+24 e & =0 \\
4 a+7 b+13 c+24 d+44 e & =0
\end{aligned}
$$

4

3. Project

Compute the projection of the vector $\left(\begin{array}{l}1 \\ 1 \\ 2 \\ 3\end{array}\right) \in \mathbf{R}^{4}$ onto the kernel of the matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & 1 & -1 & 1 \\
-1 & -1 & -1 & -1
\end{array}\right)
$$

4. Charlie Brown

Compute the inverse of the matrix

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-4 & 5 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 3 & -9 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -4 & 1
\end{array}\right) .
$$

5. The Outer Limits

Everyone's favorite matrix is built like this: take a unit vector $\widehat{x} \in \mathbf{R}^{n}$, and set $P:=\widehat{x} \widehat{x}^{\top}$. In terms of \widehat{x}, describe the kernel of P.

What are the nonzero eigenvalues of P ?

What are the corresponding eigenspaces?

6. Corny crony

Compute the characteristic polynomial of

$$
\left(\begin{array}{cccccc}
0 & 0 & 8 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & -3 \\
0 & 0 & 0 & 0 & 1 & -3
\end{array}\right) .
$$

8

7. Permute

Is the matrix

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

diagonalizable over \mathbf{R} ? over \mathbf{C} ?

8. YOU'LL FLIP

Contemplate the following matrix

$$
A=\left(\begin{array}{ccc}
5 & -1 & -1 \\
-1 & 5 & -1 \\
-1 & -1 & 5
\end{array}\right)
$$

Before you compute anything, is this matrix diagonalizable over \mathbf{R} ? over \mathbf{C} ? How do you know?

Now compute the eigenvalues and eigenspaces of this matrix.

