18.06 Final Exam

19 May 2016 at 9 Ам

STATE YOUR NAME: _____

	Roi	10-11	Sauer–Ayala
	Ro2	10-11	Carpentier
	Ro3	11-12	Sauer–Ayala
	Ro4	11-12	Carpentier
	Ro5	12-13	Hopkins
CIRCLE YOUR RECITATION:	Ro6	12-13	Anno
	Ro7	13-14	Hopkins
	Ro8	13-14	Anno
	Ro9	14-15	Fei
	R10	14-15	Knizel
	R11	15-16	Knizel

1. CLINTON OR TRUMP

For each of the following sentences, indicate whether they are true or false. (No need to justify your answer.)

- (a) If A is an $n \times n$ matrix with characteristic polynomial $p_A(t) = t^n$, then A = 0.
- (b) If A is a matrix, then any element of the kernel of A is perpindicular to any element of the image of A^{\dagger} .
- (c) The only $m \times n$ matrix of rank 0 is 0.
- (d) There is a orthogonal basis of C^3 consisting of eigenvectors for the matrix

/ 17822	-759i	-14795 + 69532i	
759 <i>i</i>	568347	385955	
-14795 - 69532i	385955	10479	ļ

(e) If

2

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

is an $2n \times 2n$ matrix in which *A*, *B*, *C*, and *D* are all $n \times n$ blocks, then det $M = (\det A)(\det D) - (\det B)(\det C)$.

2. Solve

Write a basis for the space of solutions to the system of linear equations

$$a+b+2c+4d+7e = 0;$$

$$a+2b+4c+7d+13e = 0;$$

$$2a+4b+7c+13d+24e = 0;$$

$$4a+7b+13c+24d+44e = 0.$$

3. Project

Compute the projection of the vector $\begin{pmatrix} 1\\1\\2\\3 \end{pmatrix} \in \mathbf{R}^4$ onto the kernel of the matrix

4. CHARLIE BROWN

Compute the inverse of the matrix

	/ 1	0	0	0	0	0	0	0 \
	3	1	0	0	0	0	0	0
- 1	-4	5	1	0	0	0	0	0
	0	0	0	1	3	-9	0	0
	0	0	0	0	1	2	0	0 .
	0	0	0	0	0	1	0	0
	0	0	0	0	0	0	1	0 /
```	\ 0	0	0	0	0	0	-4	1/

### 5. The Outer Limits

Everyone's favorite matrix is built like this: take a unit vector  $\hat{x} \in \mathbf{R}^n$ , and set  $P \coloneqq \hat{x}\hat{x}^{\mathsf{T}}$ . In terms of  $\hat{x}$ , describe the kernel of *P*.

What are the nonzero eigenvalues of *P*?

What are the corresponding eigenspaces?

## 6. Corny crony

Compute the characteristic polynomial of

$$\left(\begin{array}{ccccccc} 0 & 0 & 8 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & -3 \end{array}\right).$$

7. Permute

Is the matrix

$$\left(\begin{array}{cccccccc} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right)$$

diagonalizable over R? over C?

## 8. You'll flip

Contemplate the following matrix

$$A = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}.$$

Before you compute anything, is this matrix diagonalizable over **R**? over **C**? How do you know?

Now compute the eigenvalues and eigenspaces of this matrix.