18.06 Final Exam

19 May 2016 at 9 Ам

STATE YOUR NAME: Donald J. Trump

CIRCLE YOUR RECITATION: R666 0-1 SATAN

GRADING							
1.	20	/20					
2.	20	/20					
3.	20	/20					
4.	20	/20					
5· .	20	/20					
6.	20	/20					
7·.	20	/20					
8.	20	/20					
TOTAL							
160 /160							

1. CLINTON OR TRUMP

For each of the following sentences, indicate whether they are true or false. (No need to justify your answer.)

(a) If A is an $n \times n$ matrix with characteristic polynomial $p_A(t) = t^n$, then A = 0.

FALSE

2

(b) If *A* is a matrix, then any element of the kernel of *A* is perpindicular to any element of the image of *A*^τ.

TRUE

(c) The only $m \times n$ matrix of rank 0 is 0.

TRUE

(d) There is a orthogonal basis of C^3 consisting of eigenvectors for the matrix

1	/ 17822	-759i	-14795 + 69532 <i>i</i>	`
	759i	568347	385955).
1	-14795 – 69532 <i>i</i>	385955	10479	

TRUE

(e) If

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

is an $2n \times 2n$ matrix in which *A*, *B*, *C*, and *D* are all $n \times n$ blocks, then det $M = (\det A)(\det D) - (\det B)(\det C)$.

FALSE

2. Solve

Write a basis for the space of solutions to the system of linear equations

$$a + b + 2c + 4d + 7e = 0;$$

$$a + 2b + 4c + 7d + 13e = 0;$$

$$2a + 4b + 7c + 13d + 24e = 0;$$

$$4a + 7b + 13c + 24d + 44e = 0.$$

Solution. We seek a basis for the kernel of the matrix

$$A = \begin{pmatrix} 1 & 1 & 2 & 4 & 7 \\ 1 & 2 & 4 & 7 & 13 \\ 2 & 4 & 7 & 13 & 24 \\ 4 & 7 & 13 & 24 & 44 \end{pmatrix}.$$

I note that the first three columns A^1 , A^2 , A^3 are linearly independent, $A^4 = A^1 + A^2 + A^3$, and $A^5 = A^2 + A^3 + A^4$. So the rank is 3, and the nullity is two. Now I can do some easy column operations:

$$\begin{pmatrix} 1 & 1 & 2 & 4 & 7 \\ 1 & 2 & 4 & 7 & 13 \\ 2 & 4 & 7 & 13 & 24 \\ \hline 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 2 & 0 & 0 \\ 1 & 2 & 4 & 0 & 0 \\ 2 & 4 & 7 & 0 & 0 \\ \hline 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

and there's my basis:

$$\left\{ \begin{pmatrix} -1 \\ -1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \right\}.$$

3. Project

Compute the projection of the vector $\begin{pmatrix} 1\\1\\2\\3 \end{pmatrix} \in \mathbf{R}^4$ onto the kernel of the

matrix

Solution. The kernel is the same as the kernel of

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix},$$

which is the orthogonal complement to the image of A^{T} . So if $v = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}$,

then the projection we want is

$$\pi_{\operatorname{ker}(A)}(v) = v - \pi_{\operatorname{im}(A^{\mathsf{T}})}(v) = v - A^{\mathsf{T}}(AA^{\mathsf{T}})^{-1}Av,$$

whence:

$$\pi_{\ker(A)}(v) = \begin{pmatrix} 1\\1\\2\\3 \end{pmatrix} - \begin{pmatrix} 1&1\\1&-1\\1&1\\1&-1 \end{pmatrix} \begin{pmatrix} 4&0\\0&4 \end{pmatrix}^{-1} \begin{pmatrix} 7\\-1 \end{pmatrix},$$

whence

$$\pi_{\ker(A)}(v) = \begin{pmatrix} 1\\1\\2\\3 \end{pmatrix} - \begin{pmatrix} 3/2\\2\\3/2\\2 \end{pmatrix} = \begin{pmatrix} -1/2\\-1\\1/2\\1 \end{pmatrix}.$$

4

4. CHARLIE BROWN

Compute the inverse of the matrix

Solution. This matrix *X* is a block matrix, and the blocks are:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -4 & 5 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 3 & -9 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix}.$$

And their inverses are easy to compute:

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -19 & -5 & 1 \end{pmatrix}, \quad B^{-1} = \begin{pmatrix} 1 & -3 & 15 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}, \quad C^{-1} = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix},$$

so that gives

$$X^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -19 & -5 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -3 & 15 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 1 \end{pmatrix}.$$

5

5. The Outer Limits

Everyone's favorite matrix is built like this: take a unit vector $\hat{x} \in \mathbf{R}^n$, and set $P \coloneqq \hat{x}\hat{x}^{\mathsf{T}}$. In terms of \hat{x} , describe the kernel of P.

Solution. P is the orthogonal projection onto the line spanned by \hat{x} . Hence $\ker(P) = \hat{x}^{\perp}$, the orthogonal complement of the line spanned by \hat{x} .

What are the nonzero eigenvalues of *P*?

Solution. There is only one: 1. Of course 0 is an eigenvalue of P with eigenspace \hat{x}^{\perp} , and since P is symmetric, it has an orthogonal basis of eigenvectors (Spectral Theorem!), so \hat{x} spans the eigenspace of the only other eigenvalue, 1. \Box

What are the corresponding eigenspaces? Solution. The line spanned by \hat{x} .

6. Corny crony

Compute the characteristic polynomial of

$$\left(\begin{array}{ccccccc} 0 & 0 & 8 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 0 & 1 & -3 \end{array}\right).$$

Solution. We have blocks given by companion marices. So the characteristic polynomial is $(t^3 - 8)(t^3 + 3t^2 + 3t + 1)$.

7. Permute

Is the matrix

/	0	1	0	0	0	0 \
1	0	0	0	1	0	0
	1	0	0	0	0	0
	0	0	1	0	0	0
	0	0	0	0	0	1
	0	0	0	0	1	0 /

diagonalizable over R? over C?

Solution. We have a block matrix. The first block,

$$\left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right),$$

has characteristic polynomial $t^4 - 1$. The second block,

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

has characteristic polynomial $t^2 - 1$. Since each block has distinct eigenvalues, and since not all of them are real in the first block, the matrix is *not* diagonalizable over **R**, but *is* diagonalizable over **C**.

8. You'll flip

Contemplate the following matrix

$$A = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}.$$

Before you compute anything, is this matrix diagonalizable over **R**? over **C**? How do you know?

Solution. It is diagonalizable over each. The eigenvalues are real, and there's an orthogonal basis of eigenvectors by the Spectral Theorem. \Box

Now compute the eigenvalues and eigenspaces of this matrix.

Solution. The characteristic polynomial is

$$\det(tI-A) = \det\begin{pmatrix} t-5 & 1 & 1\\ 1 & t-5 & 1\\ 1 & 1 & t-5 \end{pmatrix} = t^3 - 15t^2 + 72t - 108 = (t-3)(t-6)^2.$$

So we have eigenvalues 3 and 6. The eigenspace for 3 is

$$\ker \begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}$$

is 1-dimensional, so it's spanned by $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$. The eigenspace for 6 is the orthogonal complement of that vector, which is the image of the transpose of the matrix above, which is 2-dimensional space spanned by $\begin{pmatrix} -2\\1\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\1 \end{pmatrix}$

$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$$