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Lines vs. vectors

A vector is a list of real numbers

⃗𝑎 = (

𝑎1
𝑎2
⋮
𝑎𝑛

).

We draw this vector as an arrow pointing from the point (0, 0,… , 0) to the
point (𝑎1, 𝑎2,… , 𝑎𝑛):

.
.
(0, 0,… , 0)

(𝑎1, 𝑎2,… , 𝑎𝑛)
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By extending this vector, we obtain a line:

.
.

This is the unique line between the origin and (𝑎1, 𝑎2,… , 𝑎𝑛).

Question. How can we write a formula for a parametrization of this line?
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𝜆(𝑡) = (𝑡𝑎1, 𝑡𝑎2,… , 𝑡𝑎𝑛).

Note that there’s one exception to this: the zero vector

0⃗ ≔ (

0
0
⋮
0

)

doesn’t give us much of a line. This is the only special vector. We’ll return to
this.
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Two vectors may determine the same line:

.
.

.

Question. When does this happen?
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If there’s a real number 𝑟 such that

(

𝑎1
𝑎2
⋮
𝑎𝑛

) =(

𝑟𝑏1
𝑟𝑏2
⋮
𝑟𝑏𝑛

),

then we say that ⃗𝑎 is a scalar multiple of �⃗�, and we just write ⃗𝑎 = 𝑟�⃗�. In this
case, as long as ⃗𝑎 and �⃗� are nonzero, they determine the same line.

So lines through the origin are the “same thing” as nonzero vectors, up to
scaling.
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R1 and R2

We write R𝑛 for the collection of all vectors

(

𝑎1
𝑎2
⋮
𝑎𝑛

).

Thus R1 is simply the set of real numbers, but we regard those real numbers
as arrows from the origin to the number as it sits on the number line:

.. .
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Note that if 𝑎 ∈ R1 is a nonzero real number, then any real number is a scalar
mutiple of 𝑎. In other words, R1 is 1-dimensional.

How about R2? This is the set of vectors (
𝑎1
𝑎2
). This is the set of vectors that

point from the origin to points on the plane.

A nonzero vector ⃗𝑎 ∈ R2 specifies a line through the origin. Two vectors
⃗𝑎, �⃗� ∈ R2 specify two distinct lines through the origin if and only if there exists

no real number 𝑟 such that ⃗𝑎 = 𝑟�⃗�:

.
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Now remember that we translated each line along the other to end up with a
parallelogram. Let’s do that here in such a way that the vectors meet head to
tail:

.

We thus get a new vector that points at the new vertex we created.

.
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Now let’s clear out the lines spanned by these vectors, and gaze lovingly at the
vectors themselves:

.

What we’ve drawn there is a way of taking two vectors ⃗𝑎 and �⃗�, translating ⃗𝑎
along �⃗� and translating �⃗� along ⃗𝑎 to make a parallelogram.The diagonal vector
of that parallelogram is

⃗𝑎 + �⃗� = (
𝑎1
𝑎2
) + (
𝑏1
𝑏2
) = (
𝑎1 + 𝑏1
𝑎2 + 𝑏2

) .

This is vector addition.
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The fact that you can get that diagonal by translating ⃗𝑎 along �⃗� or by translating
�⃗� along ⃗𝑎 is way of visualizing the commutativity of vector summation. It turns
out that all the algebraic properties of vectors have pictures to go along with
them.

Question. What does associativity look like? adding with 0⃗? the formation of
negatives? the distribution of scalar multiplication over vector addition?



18.06.02: ‘Vectors’

R3

Of course R3 is the set of all vectors(
𝑎1
𝑎2
𝑎3

). Consider two vectors ⃗𝑎, �⃗� ∈ R3

such that there exists no real number 𝑟 such that ⃗𝑎 = 𝑟�⃗�. These two vectors
define a plane: the vectors that can be writen as a linear combination 𝑠 ⃗𝑎 + 𝑡�⃗�;
we call this plane the span of ⃗𝑎 and �⃗�. So a vector ⃗𝑐 does not lie in the span of
⃗𝑎 and �⃗� if and only if it can’t be written as a linear combination of of ⃗𝑎 and �⃗�.

Once we’ve found such a ⃗𝑐, I claim that any vector ⃗𝑣 ∈ R3 can be written
as a linear combination of ⃗𝑎, �⃗�, and ⃗𝑐. Geometrically, this means any point
(𝑣1, 𝑣2, 𝑣3) lies in the span of ⃗𝑎, �⃗�, and ⃗𝑐.
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Algebraically, this means that for any ⃗𝑣 = (
𝑣1
𝑣2
𝑣3

), there is a solution (𝑟, 𝑠, 𝑡)

to the equation ⃗𝑣 = 𝑟 ⃗𝑎 + 𝑠�⃗� + 𝑡 ⃗𝑐. But that equation is secretly the system of
linear equations

𝑣1 = 𝑟𝑎1 + 𝑠𝑏1 + 𝑡𝑐1;

𝑣2 = 𝑟𝑎2 + 𝑠𝑏2 + 𝑡𝑐2;

𝑣3 = 𝑟𝑎3 + 𝑠𝑏3 + 𝑡𝑐3.

What we’re saying is that this set of equations has a solution.
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But there’s more: the vectors ⃗𝑎, �⃗�, and ⃗𝑐 are linearly indepenedent – that is, the
lines they span are independent.

What this means algebraically is that none of them are zero, and there’s no way
to write

⃗𝑐 = 𝑠 ⃗𝑎 + 𝑡�⃗�

or
�⃗� = 𝑝 ⃗𝑎 + 𝑞 ⃗𝑐

or
⃗𝑎 = 𝑚�⃗� + 𝑛 ⃗𝑐.
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We can express this more efficiently: what it means for ⃗𝑎, �⃗�, and ⃗𝑐 to be linearly
indepenedent is that if

𝑟 ⃗𝑎 + 𝑠�⃗� + 𝑡 ⃗𝑐 = 0⃗,

then 𝑟 = 𝑠 = 𝑡 = 0.

What we will learn is that for any ⃗𝑣 = (
𝑣1
𝑣2
𝑣3

), there is a unique solution

(𝑟, 𝑠, 𝑡) to the equation ⃗𝑣 = 𝑟 ⃗𝑎 + 𝑠�⃗� + 𝑡 ⃗𝑐.
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Let’s do an example. We’ll find three independent vectors. We have to start

with the nonzero vector ⃗𝑎 = (
1
2
1
). For our next vector, we just need to

select a vector that is not a multiple of ⃗𝑎. Here’s one: �⃗� = (
2
0
0
).



18.06.02: ‘Vectors’

Now for the tricky bit. We want a third vector, ⃗𝑐 = (
𝑐1
𝑐2
𝑐3

), that doesn’t lie

in the plane spanned by ⃗𝑎 and �⃗�. That’s more than just making sure that ⃗𝑐 is
not a scalar multiple of ⃗𝑎 or �⃗�.

OK, does (
−5/2
15
15/2
) lie in the plane spanned by ⃗𝑎 = (

1
2
1
) and �⃗� =

(
2
0
0
)??
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It looks like it does!

15
2
(
1
2
1
) + (−5)(

2
0
0
) = (

−2/5
15
15/2
) .

So how do we make sure that we get a vector that doesn’t live on that plane?

Here’s one that will work:(
0
0
2
). What makes me so sure that will work?
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See, a linear combination of ⃗𝑎 = (
1
2
1
) and �⃗� = (

2
0
0
) that gives(

0
0
2
)

would have to have a nonzero coefficient on ⃗𝑎, and that will give a nonzero
second coordinate.

So we have our example:

⃗𝑎 = (
1
2
1
) , �⃗� = (

2
0
0
) , ⃗𝑐 = (

0
0
2
)

are three linearly independent vectors in R3.
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Now my claim is that any vector ⃗𝑣 = (
𝑣1
𝑣2
𝑣3

) can be written as a unique

linear combination of ⃗𝑎, �⃗�, and ⃗𝑐. If ⃗𝑣 = (
2
−6
14
), for example, we’re trying

to solve this system of linear equations:

2 = 𝑟 + 2𝑠 + 0𝑡;

−6 = 2𝑟 + 0𝑠 + 0𝑡;

14 = 𝑟 + 0𝑠 + 2𝑡.

So we straight away get 𝑟 = −3, 𝑠 = 5/2, and 𝑡 = 17/2.



18.06.02: ‘Vectors’

Here is the general algebraic picture:

Definition. If ⃗𝑎1, ⃗𝑎2,… , ⃗𝑎𝑘 are vectors of R𝑛, then the span of ⃗𝑎1, ⃗𝑎2,… , ⃗𝑎𝑘
is the set of all linear combinations

𝑟1 ⃗𝑎1 + 𝑟2 ⃗𝑎2 +… + 𝑟𝑘 ⃗𝑎𝑘.
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So ⃗𝑣 = (

𝑣1
𝑣2
⋮
𝑣𝑛

) lies in the span of ⃗𝑎1 = (

𝑎11
𝑎21
⋮
𝑎𝑛1

), … , ⃗𝑎𝑘 = (

𝑎1𝑘
𝑎2𝑘
⋮
𝑎𝑛𝑘

)

if and only if the system of linear equations

𝑣1 = 𝑟1𝑎11 + 𝑟2𝑎12 +⋯ + 𝑟𝑘𝑎1𝑘;

𝑣2 = 𝑟1𝑎21 + 𝑟2𝑎22 +⋯ + 𝑟𝑘𝑎2𝑘;

⋮

𝑣𝑛 = 𝑟1𝑎𝑛1 + 𝑟2𝑎𝑛2 +⋯ + 𝑟𝑘𝑎𝑛𝑘.

has at least one solution.
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Geometrically, that means that a vector ⃗𝑣 lies in the span of ⃗𝑎1, ⃗𝑎2,… , ⃗𝑎𝑘 when
you can build a multidimensional parallelopiped out of ⃗𝑎1, ⃗𝑎2,… , ⃗𝑎𝑘 to get ⃗𝑣
pointing from the origin across the diagonal.
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Figure 1: Doesn’t know how to make an image of multidimensional
paralellopipeds.
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Definition. We say vectors ⃗𝑎1, ⃗𝑎2,… , ⃗𝑎𝑘 ofR𝑛 are linearly independent if we’re
in the following situation: any vanishing linear combination

𝑟1 ⃗𝑎1 + 𝑟2 ⃗𝑎2 +… + 𝑟𝑘 ⃗𝑎𝑘 = 0⃗

must be a trivial linear combination – that is, we must have

𝑟1 = 𝑟2 = ⋯ = 𝑟𝑘 = 0.
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So the vectors ⃗𝑎1 = (

𝑎11
𝑎21
⋮
𝑎𝑛1

), … , ⃗𝑎𝑘 = (

𝑎1𝑘
𝑎2𝑘
⋮
𝑎𝑛𝑘

) are linearly indepen-

dent if and only if any system of linear equations

𝑣1 = 𝑟1𝑎11 + 𝑟2𝑎12 +⋯ + 𝑟𝑘𝑎1𝑘;

𝑣2 = 𝑟1𝑎21 + 𝑟2𝑎22 +⋯ + 𝑟𝑘𝑎2𝑘;

⋮

𝑣𝑛 = 𝑟1𝑎𝑛1 + 𝑟2𝑎𝑛2 +⋯ + 𝑟𝑘𝑎𝑛𝑘.

has at most one solution.
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Geometrically, that means that none of the vectors ⃗𝑎𝑖 lie in the span of the
remaining vectors

⃗𝑎1, ⃗𝑎2,… , ⃗𝑎𝑖−1, ⃗𝑎𝑖+1,… , ⃗𝑎𝑘.
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Figure 2: Cool. Can we go play in the snow now?
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We’d like a more efficient way of checking whether a vector lies in a span of a
certain collection of vectors and whether that collection of vectors is linearly
independent.

To do this, we’ll want to introduce two fundamental manipulations of vectors:
forming the dot product of two vectors and combining a list of vectors into
a matrix. The dot product extracts a bunch of helpful geometry, and matri-
ces give us an efficient way to organize and conceptualize systems of linear
equations.

For next week, please read §§1.2–2.1 of Strang.

The first problem set will be posted on Monday.


