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The length of a vector ⃗𝑎 = (

𝑎1
𝑎2
⋮
𝑎𝑛

) ∈ R𝑛 is defined using the good old law

of Pythagoras:
‖ ⃗𝑎‖ ≔ √𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑛.

Geometrically, it works exactly as we expect – it’s the length of the line segment
from the origin to (𝑎1, 𝑎2,… , 𝑎𝑛):

.
.

(0, 0,… , 0)
(𝑎1, 𝑎2,… , 𝑎𝑛)
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Here’s a vector in R9. How long is it?

⃗𝑣 =

((((((((((

(

−6
0
2
−3
4
−7
0
9
−1

))))))))))

)
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Here are the key facts about length, which you can deduce either from the
geometry or from some easy algebra:

▶ ‖ ⃗𝑎‖ ≥ 0;

▶ ‖ ⃗𝑎‖ = 0 if and only if ⃗𝑎 = 0⃗;

▶ ‖𝑟 ⃗𝑎‖ = |𝑟|‖ ⃗𝑎‖;

▶ ‖ ⃗𝑎 + �⃗�‖ ≤ ‖ ⃗𝑎‖ + ‖�⃗�‖.
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The story we’re told is that nonzero vectors are nothing more than a length and
a direction.We’ve already sorted out what length is. Direction can be obtained,
in effect, by normalizing the length: if ⃗𝑎 ≠ 0⃗, then we define

𝑎 ≔ 1
‖ ⃗𝑎‖

⃗𝑎.

This is the unit vector in the direction of ⃗𝑎. Clearly ‖𝑎‖ = 1, and so

⃗𝑎 = ‖ ⃗𝑎‖𝑎.

The unit vector 𝑎 is the direction of ⃗𝑎.
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One way to think about this is that you take a nonzero vector, and scale it so
that the head of the arrow lies at the unit circle:

.
𝑎

⃗𝑎
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Remember that vector ⃗𝑣 ∈ R9? The corresponding unit vector is

𝑣 =

((((((((((

(

−3/7
0

1/7
−3/14
2/7
−1/2
0

9/14
−1/14

))))))))))

)

.
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There are unit vectors in R𝑛 that everyone knows; we mentioned them on
Friday:

̂𝑒𝑖 =

((((((((((

(

0
0
⋮
0
1
0
0
⋮
0

))))))))))

)

,

where the 1 is in the 𝑖-th spot.
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While walking in a quiet area of R17, you encounter two unit vectors. Since
these two vectors define a plane, you can just look at that plane:

.

𝑎

�̂�
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You can also draw the lines in the plane these vectors define:

.

𝑎

�̂�
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Now we can drop perpindiculars from our unit vectors to these lines:

.

𝑎

�̂�

The signed length from the origin to the right angle (either one!!) is the dot
product 𝑎 ⋅ �̂�. Note that this is a scalar (not a vector), and it is the cosine of the
angle between 𝑎 and �̂�.
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Let’s get some easy stuff out of the way. If 𝑎 = (

𝑎1
𝑎2
⋮
𝑎𝑛

), then what is

𝑎 ⋅ ̂𝑒𝑖 = ?
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Indeed, 𝑎 ⋅ ̂𝑒𝑖 = 𝑎𝑖:

.
𝑎
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But what if ⃗𝑎 and �⃗� aren’t unit vectors?

In that case, we scale our dot product accordingly:

⃗𝑎 ⋅ �⃗� ≔ ‖ ⃗𝑎‖‖�⃗�‖(𝑎 ⋅ �̂�).

.

𝑎

�̂�
𝑟�̂�
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This also gives us another way of writing down the length:

‖ ⃗𝑎‖ = √ ⃗𝑎 ⋅ ⃗𝑎.
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More generally, you have a good distributive law:

( ⃗𝑎 + �⃗�) ⋅ ⃗𝑐 = ⃗𝑎 ⋅ ⃗𝑐 + �⃗� ⋅ ⃗𝑐.

This distributive law is actually the key to computing the dot product!

⃗𝑎 ⋅ �⃗� = (𝑎1 ̂𝑒1 + 𝑎2 ̂𝑒2 + ⋯ + 𝑎𝑛 ̂𝑒𝑛) ⋅ �⃗�

= 𝑎1( ̂𝑒1 ⋅ �⃗�) + 𝑎2( ̂𝑒2 ⋅ �⃗�) + ⋯ + 𝑎𝑛( ̂𝑒𝑛 ⋅ �⃗�)

= 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛.
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It’s surprisingly good news that the formula is so simple! Let’s see if we can
use this.

Question. What’s the angle between the following two lines in R4?

𝑙1(𝑡) = (𝑡, −𝑡, 𝑡, −𝑡) and 𝑙2(𝑡) = (2𝑡, 𝑡, 0 − 2𝑡)
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Figure 1: Methane

Question. What are the angles between the bonds in a molecule of methane?



18.06.03: ‘Length and angle’

The projection of a vector �⃗� onto a vector ⃗𝑎 is the vector

𝜋 ⃗𝑎(�⃗�) ≔ (𝑎 ⋅ �⃗�)𝑎 = ⃗𝑎 ⋅ �⃗�
⃗𝑎 ⋅ ⃗𝑎

⃗𝑎.

.

⃗𝑎

�⃗�

𝜋 ⃗𝑎(�⃗�)
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On Wednesday, we will use the dot product repeatedly to convert systems of
linear equations into matrices.

The first problem set will be online soon.


