18.06.03: 'Length and angle'

Lecturer: Barwick

Monday 08 February 2016

18.06.03: 'Length and angle'

The length of a vector $\vec{a}=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right) \in \mathbf{R}^{n}$ is defined using the good old law of Pythagoras:

$$
\|\vec{a}\|:=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}} .
$$

Geometrically, it works exactly as we expect - it's the length of the line segment from the origin to $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad(0,0, \ldots, 0)
$$

18.06.03: 'Length and angle'

Here's a vector in \mathbf{R}^{9}. How long is it?

$$
\vec{v}=\left(\begin{array}{c}
-6 \\
0 \\
2 \\
-3 \\
4 \\
-7 \\
0 \\
9 \\
-1
\end{array}\right)
$$

18.06.03: 'Length and angle'

$$
\left\|\left(\begin{array}{c}
-6 \\
0 \\
2 \\
-3 \\
4 \\
-7 \\
0 \\
9 \\
-1
\end{array}\right)\right\|=14
$$

18.06.03: 'Length and angle'

Here are the key facts about length, which you can deduce either from the geometry or from some easy algebra:

- $\|\vec{a}\| \geq 0 ;$
- $\|\vec{a}\|=0$ if and only if $\vec{a}=\overrightarrow{0}$;
- $\|r \vec{a}\|=|r|\|\vec{a}\| ;$
- $\|\vec{a}+\vec{b}\| \leq\|\vec{a}\|+\|\vec{b}\|$.

18.06.03: 'Length and angle'

The story we're told is that nonzero vectors are nothing more than a length and a direction. We've already sorted out what length is. Direction can be obtained, in effect, by normalizing the length: if $\vec{a} \neq \overrightarrow{0}$, then we define

$$
\widehat{a}:=\frac{1}{\|\vec{a}\|} \vec{a} .
$$

This is the unit vector in the direction of \vec{a}. Clearly $\|\widehat{a}\|=1$, and so

$$
\vec{a}=\|\vec{a}\| \vec{a} .
$$

The unit vector \widehat{a} is the direction of \vec{a}.

18.06.03: 'Length and angle’

One way to think about this is that you take a nonzero vector, and scale it so that the head of the arrow lies at the unit circle:

18.06.03: 'Length and angle’

Remember that vector $\vec{v} \in \mathbf{R}^{9}$? The corresponding unit vector is

$$
\widehat{v}=\left(\begin{array}{c}
-3 / 7 \\
0 \\
1 / 7 \\
-3 / 14 \\
2 / 7 \\
-1 / 2 \\
0 \\
9 / 14 \\
-1 / 14
\end{array}\right) .
$$

18.06.03: 'Length and angle’

There are unit vectors in \mathbf{R}^{n} that everyone knows; we mentioned them on Friday:

$$
\hat{e}_{i}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right),
$$

where the 1 is in the i-th spot.

18.06.03: 'Length and angle’

While walking in a quiet area of \mathbf{R}^{17}, you encounter two unit vectors. Since these two vectors define a plane, you can just look at that plane:

18.06.03: 'Length and angle'

You can also draw the lines in the plane these vectors define:

18.06.03: 'Length and angle'

Now we can drop perpindiculars from our unit vectors to these lines:

The signed length from the origin to the right angle (either one!!) is the dot product $\hat{a} \cdot \hat{b}$. Note that this is a scalar (not a vector), and it is the cosine of the angle between \hat{a} and \hat{b}.

18.06.03: 'Length and angle’

Let's get some easy stuff out of the way. If $\widehat{a}=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right)$, then what is

$$
\widehat{a} \cdot \hat{e}_{i}=?
$$

18.06.03: 'Length and angle'

Indeed, $\widehat{a} \cdot \hat{e}_{i}=a_{i}$:

18.06.03: 'Length and angle'

But what if \vec{a} and \vec{b} aren't unit vectors?
In that case, we scale our dot product accordingly:

$$
\vec{a} \cdot \vec{b}:=\|\vec{a}\|\|\vec{b}\|(\widehat{a} \cdot \hat{b}) .
$$

18.06.03: 'Length and angle’

This also gives us another way of writing down the length:

$$
\|\vec{a}\|=\sqrt{\vec{a} \cdot \vec{a}} .
$$

18.06.03: 'Length and angle’

More generally, you have a good distributive law:

$$
(\vec{a}+\vec{b}) \cdot \vec{c}=\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}
$$

This distributive law is actually the key to computing the dot product!

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\left(a_{1} \hat{e}_{1}+a_{2} \hat{e}_{2}+\cdots+a_{n} \hat{e}_{n}\right) \cdot \vec{b} \\
& =a_{1}\left(\hat{e}_{1} \cdot \vec{b}\right)+a_{2}\left(\hat{e}_{2} \cdot \vec{b}\right)+\cdots+a_{n}\left(\hat{e}_{n} \cdot \vec{b}\right) \\
& =a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
\end{aligned}
$$

18.06.03: 'Length and angle’

It's surprisingly good news that the formula is so simple! Let's see if we can use this.

Question. What's the angle between the following two lines in \mathbf{R}^{4} ?

$$
l_{1}(t)=(t,-t, t,-t) \quad \text { and } \quad l_{2}(t)=(2 t, t, 0-2 t)
$$

18.06.03: 'Length and angle’

Figure 1: Methane

Question. What are the angles between the bonds in a molecule of methane?

18.06.03: 'Length and angle’

The projection of a vector \vec{b} onto a vector \vec{a} is the vector

$$
\pi_{\vec{a}}(\vec{b}):=(\widehat{a} \cdot \vec{b}) \widehat{a}=\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} .
$$

18.06.03: 'Length and angle'

On Wednesday, we will use the dot product repeatedly to convert systems of linear equations into matrices.

The first problem set will be online soon.

