18.06.04: 'Matrices'

Lecturer: Barwick
Wednesday 10 February 2016

18.06.04: 'Matrices'

Figure 1: What are the angles between my bonds?

You were saying?

18.06.04: 'Matrices'

Exam 1 is a week from today

- It should be pretty simple.
- I will cover the course material through Friday's lecture.
- You may not use any aids.

18.06.04: 'Matrices'

The projection of a vector \vec{b} onto a vector \vec{a} is the vector

$$
\pi_{\vec{a}}(\vec{b}):=(\widehat{a} \cdot \vec{b}) \widehat{a}=\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} .
$$

18.06.04: 'Matrices'

Matrices

Matrices are rectangular arrays of real numbers:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

18.06.04: 'Matrices'

Here, A has m rows and n columns. We say that A is an $m \times n$ matrix. We can think of A as a sequence of n vectors in \mathbf{R}^{m} :

$$
A=\left(\begin{array}{llll}
\vec{A}^{1} & \vec{A}^{2} & \cdots & \vec{A}^{n}
\end{array}\right)
$$

or as a sequence of m row vectors in \mathbf{R}^{n} :

$$
A=\left(\begin{array}{c}
\vec{A}_{1} \\
\vec{A}_{2} \\
\vdots \\
\vec{A}_{m}
\end{array}\right) .
$$

18.06.04: 'Matrices'

The first thing that makes the notion of a matrix interesting is that you can multiply matrices by vectors. If

$$
\vec{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) \in \mathbf{R}^{n}
$$

then we can write

$$
A \vec{b}=b_{1} \vec{A}^{1}+b_{2} \vec{A}^{2}+\cdots+b_{n} \vec{A}^{n}=\left(\begin{array}{c}
a_{11} b_{1}+a_{12} b_{2}+\cdots+a_{1 n} b_{n} \\
a_{21} b_{1}+a_{22} b_{2}+\cdots+a_{2 n} b_{n} \\
\vdots \\
a_{m 1} b_{1}+a_{m 2} b_{2}+\cdots+a_{m n} b_{n}
\end{array}\right)
$$

18.06.04: 'Matrices'

Or, equivalently,

$$
A \vec{b}:=\left(\begin{array}{c}
\vec{A}_{1} \cdot \vec{b} \\
\vec{A}_{2} \cdot \vec{b} \\
\vdots \\
\vec{A}_{m} \cdot \vec{b}
\end{array}\right)=\left(\begin{array}{c}
a_{11} b_{1}+a_{12} b_{2}+\cdots+a_{1 n} b_{n} \\
a_{21} b_{1}+a_{22} b_{2}+\cdots+a_{2 n} b_{n} \\
\vdots \\
a_{m 1} b_{1}+a_{m 2} b_{2}+\cdots+a_{m n} b_{n}
\end{array}\right)
$$

18.06.04: 'Matrices'

One way to say what's going on here is to say that multiplication by an $m \times n$ matrix A is a function

$$
T_{A}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{m}
$$

that is defined so that

$$
T_{A}(\vec{x})=A \vec{x}
$$

This is an important way to think about matrices, and so we should pay close attention to this picture.

18.06.04: 'Matrices'

Let's think about this function applied to the unit vectors \hat{e}_{i} :

$$
T_{A}\left(\hat{e}_{i}\right)=A \hat{e}_{i}=?
$$

18.06.04: 'Matrices'

$$
T_{A}\left(\hat{e}_{i}\right)=A \hat{e}_{i}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
a_{1 i} \\
a_{2 i} \\
\vdots \\
a_{m i}
\end{array}\right)=\vec{A}^{i} .
$$

$$
A=\left(\begin{array}{llll}
A \hat{e}_{1} & A \hat{e}_{1} & \cdots & A \hat{e}_{n}
\end{array}\right)
$$

18.06.04: 'Matrices'

Question. If $\theta \in[0,2 \pi)$, then we can form this 2×2 matrix:

$$
R_{\theta}:=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

Describe the corresponding function $T_{R_{\theta}}: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$ geometrically.

18.06.04: 'Matrices'

Armed with this, we can compile systems of m linear equations

$$
\begin{aligned}
v_{1} & =a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
v_{2} & =a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} \\
& \vdots \\
v_{m} & =a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{aligned}
$$

into the single equation $\vec{v}=A \vec{x}$, where $\vec{v} \in \mathbf{R}^{n}$ is a fixed vector, and $\vec{x} \in \mathbf{R}^{m}$ is a variable vector. Solving the system is solving the compiled equation.

18.06.04: 'Matrices'

But so what? It's the same data, but a different format.

The point is that qualitative things about the system of linear equations can be extracted from qualitative things about the matrix.

18.06.04: 'Matrices'

Here's a diagonal $n \times n$ matrix:

$$
A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right):=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

$$
A \vec{b}=\left(\begin{array}{c}
\lambda_{1} b_{1} \\
\lambda_{2} b_{2} \\
\vdots \\
\lambda_{n} b_{n}
\end{array}\right)
$$

so equations $A \vec{x}=\vec{v}$ will be wicked easy to solve (uniquely??).

18.06.04: 'Matrices'

Only slightly less easy to solve will be what we get out of an $n \times n$ upper triangular matrix:

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \\
A \vec{b}=\left(\begin{array}{c}
a_{11} b_{1}+a_{12} b_{2}+\cdots+a_{1 n} b_{n} \\
a_{22} b_{2}+a_{23} b_{3}+\cdots+a_{2 n} b_{n} \\
\vdots \\
a_{n n} b_{n}
\end{array}\right) .
\end{gathered}
$$

18.06.04: 'Matrices'

Question. Suppose A an $m \times n$ matrix. When is a vector in \mathbf{R}^{m} of the form $A \vec{b}$ for some vector $\vec{b} \in \mathbf{R}^{n}$?

Hint: We gave this formula

$$
A \vec{b}=b_{1} \vec{A}^{1}+b_{2} \vec{A}^{2}+\cdots+b_{n} \vec{A}^{n},
$$

which exhibits $A \vec{b}$ as a linear combination of the column vectors of $A \ldots$

18.06.04: 'Matrices'

Question. Suppose A an $m \times n$ matrix. When is the system of linear equations $A \vec{x}=\vec{v}$ redundant? That is, when is it the case that the equations provide the same constraints on the variable \vec{x} that could be provided with fewer equations?

Hint: we have the dual formula

$$
A \vec{b}:=\left(\begin{array}{c}
\vec{A}_{1} \cdot \vec{b} \\
\vec{A}_{2} \cdot \vec{b} \\
\vdots \\
\vec{A}_{m} \cdot \vec{b}
\end{array}\right)
$$

