18.06.10: 'Spaces of vectors'

Lecturer: Barwick

Friday 26 February 2016

18.06.10: 'Spaces of vectors'

Another day, another system of linear equations.

$$
\begin{aligned}
& 0=-12 x+11 y-17 z \\
& 0=2 x-y+9 z \\
& 0=-3 x+4 y+5 z
\end{aligned}
$$

Solve it!!

The rows are not linearly independent, so there are infinitely many solutions.
You can reduce these equations to just two: $41 y=37 x$ and $41 z=-5 x$. In other words, any solution is a multiple of the vector

$$
\left(\begin{array}{c}
41 \\
37 \\
-5
\end{array}\right)
$$

This is the information that the system of linear equations provides.

18.06.10: 'Spaces of vectors'

How infinite is infinite?

We've said a few times that a system of linear equations has either 0,1 , or $+\infty$ many solutions.

When the system of linear equations is of the form

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} a_{1 i} x_{i} ; \\
0 & =\sum_{i=1}^{n} a_{2 i} x_{i} ; \\
& \vdots \\
0 & =\sum_{i=1}^{n} a_{n i} x_{i},
\end{aligned}
$$

we always have the solution $x_{1}=x_{2}=\cdots=x_{n}=0$, so our only two options in this case are 1 or $+\infty$. But we can we say more. For example, are all the solutions multiples of a single vector??

Here's a system of linear equations with infinitely many solutions:

$$
\begin{aligned}
& 0=3 x-2 y \\
& 0=4 y-5 z \\
& 0=6 x-5 z
\end{aligned}
$$

We reduce to $3 x=2 y$ and $4 y=5 z$, and that's all the information. The last equation doesn't actually participate. So any vector that satisfies the system above is a multiple of

$$
\left(\begin{array}{c}
1 \\
2 / 3 \\
8 / 15
\end{array}\right)
$$

18.06.10: 'Spaces of vectors'

Here's a system of linear equations with infinitely many solutions:

$$
\begin{aligned}
& 0=4 u+2 v+6 x+3 y \\
& 0=2 u+3 x \\
& 0=2 v+3 y \\
& 0=2 u-4 v+3 x-6 y
\end{aligned}
$$

How close can you come?

18.06.10: 'Spaces of vectors'

You can see straightaway that the equations $2 u=-3 x$ and $2 v=-3 y$ completely determine the system. The other equations are just offering the same information. So any vector that satisfies the system above is a linear combination of

$$
\left(\begin{array}{c}
3 \\
0 \\
-2 \\
0
\end{array}\right) \text { and }\left(\begin{array}{c}
0 \\
3 \\
0 \\
-2
\end{array}\right)
$$

This lets us parametrize the solution space!!

18.06.10: 'Spaces of vectors'

What we're doing when we solve systems of linear equations is finding a basis for the space of solutions.

Definition. A subspace $V \subseteq \mathbf{R}^{n}$ is a collection V of vectors of \mathbf{R}^{n} such that:
(1) for any vectors $\vec{v}, \vec{w} \in V$, the sum $\vec{v}+\vec{w} \in V$;
(2) for any real number r and any vectors $\vec{v} \in V$, the scalar multiple $r \vec{v} \in V$.

18.06.10: 'Spaces of vectors'

Example. For any $m \times n$ matrix A, the set

$$
\operatorname{ker}(A):=\left\{\vec{v} \in \mathbf{R}^{n} \mid A \vec{v}=\overrightarrow{0}\right\}
$$

is a subspace of \mathbf{R}^{n}. This is called the kernel of A. This may also be called the space of solutions of the system of linear equations:

$$
\begin{aligned}
0 & =\sum_{i=1}^{n} a_{1 i} x_{i} \\
& \vdots \\
0 & =\sum_{i=1}^{n} a_{n i} x_{i}
\end{aligned}
$$

18.06.10: 'Spaces of vectors'

Definition. A basis of a subspace $V \subseteq \mathbf{R}^{n}$ is a collection $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ of vectors $\vec{v}_{i} \in V$ such that:
(1) the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent;
(2) the vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span V.

We say that V is k-dimensional.

18.06.10: 'Spaces of vectors'

The two conditions in the definition above are complementary. To illustrate, let's write them this way.
(1) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$ are linearly independent if and only if, for any vector $\vec{w} \in V$, there exists at most one way to write \vec{w} as a linear combination

$$
\vec{w}=\sum_{i=1}^{k} \alpha_{i} \vec{v}_{i}
$$

(2) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span V if and only if, for any vector $\vec{w} \in V$, there exists at least one way to write \vec{w} as a linear combination

$$
\vec{w}=\sum_{i=1}^{k} \alpha_{i} \vec{v}_{i} .
$$

18.06.10: 'Spaces of vectors'

(3) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are a basis of V if and only if, for any vector $\vec{w} \in V$, there exists exactly one way to write \vec{w} as a linear combination

$$
\vec{w}=\sum_{i=1}^{k} \alpha_{i} \vec{v}_{i}
$$

The similarities between these conditions and the conditions of injectivity, surjectivity, and bijectivity are no accident...

18.06.10: 'Spaces of vectors'

Take some vectors $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$ and make them into the columns of an $n \times k$ matrix

$$
A=\left(\begin{array}{cccc}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{k}
\end{array}\right) .
$$

Multiplication by A is a map $T_{A}: \mathbf{R}^{k} \longrightarrow V$ that carries \hat{e}_{i} to \vec{v}_{i}.
(1) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$ are linearly independent if and only if T_{A} is injective.
(2) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ span V if and only if T_{A} is surjective.
(3) The vectors $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are a basis of V if and only if T_{A} is bijective.

